
SIAM J. COMPUT.
VOI. 3, No. 1, March 1974

THE COMPUTING TIME OF THE EUCLIDEAN ALGORITHM*

GEORGE E. COLLINS?

Abstract. The minimum, maximum and average computing times of the classical Euclidean
algorithm are derived. With positive integer inputs of lengths m and n, and with output (greatest com-
mon divisor) of length k, m > n >__ k, the minimum is shown to be codominant with n(m- n + 1)
+ k(n- k + 1), while both the maximum and the average are shown to be codominant with
n(m-k + 1).

Key words. Euclidean algorithm, greatest common divisor, arithmetic algorithms, algorithm
analysis

1. Introduction. Knuth Ill], Dixon [6], 7] and Heilbronn [8] have recently
investigated in considerable depth the average number of divisions performed in
the Euclidean algorithm for integers. Although many interesting questions re-
main unanswered, the relatively elementary result of Dixon in 7] already suffices
to completely determine the average computing time of the Euclidean algorithm
to within a constant factor, which is in any case dependent on the particular com-
puter used and inessential details of the implementation. Such a determination
of the average computing time of the Euclidean algorithm is the main result of
the present paper. The maximum and minimum computing times of the Euclidean
algorithm for integers will also be derived since, although their determination is
quite elementary, they have apparently not previously been published. These
computing times are all derived as functions of three variables, namely the lengths
of the two inputs and the length of the resulting g.c.d. (greatest common divisor).
Previous results on the computing time of the Euclidean algorithm ([2 and 11,
4.5.2, Exercise 30]) have been limited to upper bounds on the maximum com-

puting time.

2. Dominance and eodominanee. The relations of dominance and co-
dominance between real-valued functions were introduced in [31, where they were
used in the analysis of the computing time of an algorithm for polynomial re-
sultant calculation. The related concepts and notation have subsequently been
adopted by several authors, for example, Brown [1], Heindel [9] and Musser
F121. The definitions and some fundamental properties will be repeated here
since they will not yet be familiar to many readers.

If f and g are real-valued functions defined on a common domain S, we say
that f is dominated by g, and write f g, in case there is a positive real number
such that f(x) < c. g(x) for all x S. We also say that g dominates f, and write
g f. Dominance is clearly a reflexive and transitive relation. It is important to
note that the definition is not restricted to functions of one variable since the
elements of S may be n-tuples.

Received by the editors February 12, 1973, and in revised form September 17, 1973. This work
was supported by the National Science Foundation under Grant GJ-30125X, by the Wisconsin
Alumni Research Foundation, and in part by the Advanced Research Projects Agency of the Office
of the Secretary of Defense under Grant SD-183.

]" Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.

2 GEORGE E. COLLINS

Knuth [10, pp. 104-108] defines f(x)= O(g(x))in case there is a positive
constant c such that If(x)] =< c.]g(x)]. As long as one is dealing only with non-
negative-valued functions, this formally coincides with the above definition of
j’ g. Although Knuth implies that this definition is applicable only whenf and
g are functions of one variable, he in fact uses it for functions of more than one
variable (e.g., [11, p. 388]) in a manner which is consistent with our definition.
Thus dominance is apparently a new notation and terminology but not a new
concept. Although Knuth discussed at length the logical weaknesses of the O-
notation, he chose not to abandon it in favor of the more natural notation of an
order relation.

lff -< g and g f, then we say that land g are codominant, and writer g.
Codominance is clearly an equivalence relation. Iff -< g but not g --<_ f, then we-
say that f is strictly dominated by g, and write f -< g. We may also say that g
strictly dominates f, and write g >- f. Strict dominance is clearly irreflexive and
transitive. Whereas the O-notation has no counterparts for the codominance and
strict dominance relations, it will become apparent that these are important
concepts in algorithm computing time analyses. Furthermore, the O-notation
has a somewhat different meaning in asymptotic analysis than the one used by
Knuth (see, e.g., [5]).

Iff and g are functions defined on S and $1 is a subset of S, it will often be
convenient to write./ g on St in case J’ g, where fl and g are the functions
f and g restricted to $1. Also, if S c_z S x x S,, a Cartesian product, we will
denote by J the function f restricted to ({a} ["1 $2 x x S,) S; that is,
f(x2,"’, x,) f(a, x2,..., x,) for (a, x2, ..’, x,)e S. Similarly we may fix any
other of the n variables off.

Dominance and codominance have the following fundamental properties,
most of which were listed by Musser in [12].

THEOREM 1. Let f, f, f2, g, g and g2 be nonnegative real-valued functions on
S, and let c be a positive real number. Then

(a) f
(b) ij’L gl andf2 g2, thenf + f2 g + g2 andff2 -< gg2;
(c) iff g and fz "< g, then f + f2 "< g;
(d) max (f, g) f+ g;
(e) if f and -< g, then f + g fg
(f) if -.(f, then f f+ c;
(g) if S S x x S, and a S then f g implies fa ga;
(h) if S S (J $2, then f g on $1 and f-< g on $2 implies f g on S.
Proof. These properties follow immediately from the definition, except for

(e). To prove (e), apply (b) to f-< f and g, obtaining f fg. Similarly
g-< fg, so f + g _fg by (c). |

3. Comptting time functions. Let A be any algorithm, and let S be the set of
all valid inputs to A. In general, S will be denumerable, and its elements may be
n-tuples. We associate with A a computing time function A defined on S, the
positive integer ta(X being the number of basic operations performed by the
algorithm A when presented with the input x. This assumes that the algorithm

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 3

is unambiguously specified in terms ofsome finite set of basic operations. Changing
the set of basic operations (as in reprogramming the algorithm for a different
computer) will result in changing the computing time function a. Alternatively,
we could take the view that this represents a change in the algorithm. However,
if B1 and B2 are two sets, of basic operations such that each operation in B1 can
be performed by a fixed sequence of operations in B2, and vice versa, then the
computing time functions associated with B1 and B2 for any algorithm A are
codominant, and we will concern ourselves only with the codominance equivalence
class of A Thus the choice of basic operations is somewhat arbitrary. We assume
a choice which is consistent with any of the existing, or conceivable, random
access digital computers but, in order to avoid the triviality of finiteness, with a
memory which is indefinitely ,expandable.

The function A is frequently too complex to be of interest for direct study.
Instead, we ordinarily decompose S into a disjoint union S 13, 1S,, where
each S, is a nonempty finite set, S being a denumerable set. The choice of de-
composition is made on the basis of some prior knowledge or some conjecture
about the general behavior of A Relative to a decomposition5 S1, $2, $3,
of S we define maximum, minimum and average computing time functions,
a+, t4 and t,], on as follows, where IS.I denotes the number of elements of S,"

(1) t(S,) max ta(X),

(2) t2(S,) min tA(X),

(3) t](s.) =/
As an illustration, and in preparation for our analysis of the Euclidean algo-

rithm, let us consider the computing times of the classical algorithms for arith-
metic operations, that is, addition, subtraction, multiplication and division, of
arbitrarily large integers. We assume that all integers are represented in radix
form relative to an integral base >__ 2, as discussed by Knuth in [11, 4.3]. We
know that the computing times of these algorithms depend on the lengths of the
inputs.

Following Musser [12] we denote by La(a) the [d-length of the integer a, that
is, the number of digits in the radix form of a relative to the base//. If [x] is the
ceiling function of x, the least integer greater than or equal to x, and lxj is the
floor function of x, the greatest integer less than or equal to x, we have

(4) Lt(a) [logt (lal + 1)q- Llogt lall +

for a - 0, and we define La(0) 1.
In most contexts the base is fixed, and we write simply L(a) for the length

of a. The omission of the subscript is further justified by the observation that, 7
being any other base, we have

(5) Lt-- L,

4 GEORGE E. COLLINS

where Lt and L are functions defined on the set I of all integers. In fact, we can
use the definition (4) when a is any real number, and we then have

(6) Lt(a In (lal + 2) on R,

where In is the natural logarithm and R is the set of all real numbers, and (6)
clearly implies (5). The length function also has the following easily verified
fundamental properties (here I is the set of integers)"

(7) L(a 4- b) L(a)+ L(b) for a, b I,

(8) L(ab) L(a) + L(b) for a, b e I {0},
(9) L([a/b])..L(a)-L(b)+ fora, beI and la >_lbl >0,

where Ix] [x for x > 0 and Ix] Ix] for x < 0.
THEOREM 2. (a) Let S= {(al,’..,a,)’n >= and al,...,a, 6I}. Then

L(l-[= ai) 27= 1L(ai) 07/ S.
(b) Let $ {(a,...,a)’n >= and a, a I {-1,0, 1. Then

L L(a) on S.(l-I/= lai)’’ Z7=1
L L(ai) by in-Proof. L(ab) <= L(a) + L(b) for a, b I, so (I-I,= lai) <- ,,=1

duction on n, proving (a). To prove (b), assume first that 2 =< lail </3 for =< =< n.
Then

=> (log 2)log2 2"= (log 2)n (log 2) L(ai),
i=1

Lso 7= xL(ai)<= (log2 fl) (l-I/= ai) Next, assume L(ai)> 2 for =< _< n, and
let 1 Ll(ai). Then

i=1
=> loga

so E’= 1L(ai)<--- 2L(I-I’= la,)
Combining these two cases, we assume L(ai) for < N m and L(ai) >_ 2

form + _< i_< n. Then

L(a,) <_<_ (log2 fl)L
i=1

--<_ 2(log2

i=1 i=m+l

L Io + L(fi
i=1 i=m+

since L(a) + L(b) 2L(ab) for a, b e I {0}. |

As an immediate corollary of Theorem 2, we have

(10) L(ab),-bL(a) fora, beI,]a] >2 and b>0.

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 5

If A, M and D are the classical algorithms for addition (or subtraction),
multiplication and division, respectively, as described in [11, 4.3], then we
clearly have

(11) tA(a,b)L(a)+L(b) fora, beI- {0},

(12) tM(a,b)L(a).L(b) fora, bI- {0},

(13) to(a,b)L(b).L([a/b]) fora,belandla >]b >0.

Thus, for these algorithms, the natural decomposition of the set S {(a, b)"
a, be I} consists of the sets S,,, {(a,b)’L(a)= m and L(b)= n I. If we write
t+(m,n) in place of t+(Sm,,), and similarly for t- and t*, then from (11), (12) and
(13), and using (9), we have

(14) t-(m, n).. t.-(m, n).. t4(m, n) m + n,

(15) th(m, n) tt(m, n) t](m, n) mn,

(16) tD(m,n)’. tD(m,n)., t)(m,n).,n(m- n + 1) form >_ n.

Thus for these algorithms the maximum, minimum and average computing
times all coincide. This will not be the case for the Euclidean algorithm, to which
we now turn.

4. The maximum and minimum computing times. For simplicity, and without
loss of generality, we will consider the following version of the Euclidean algo-
rithm, for which the permissible inputs are the pairs (a, b) of positive integers
with a >= b. The output of the algorithm is the positive integer c g.c.d.(a, b).

ALGORITHM E.
Step 1. [Initialize.] c ,- a" d ,- b.
Step 2. [Divide.] Compute the quotient q and remainder r such that c dq

+ r and 0 =< r < d, using Algorithm D (classical algorithm for division).
Step 3. [Test for end.] c ,- d;d ,- r’if d - 0, go to Step 2.
Step 4. Return.
This algorithm computes two sequences, (al,a2, ..., at+z) and (ql,q2,.., q), such that a a, a2 b, ai qiai+l + ai+ 2 with 0 __< ai+ 2 < ai+l for

__< =< l, and a+ 2 0. a l, al+ are the successive values assumed by the
variable c, and q 1,’", ql are the successive values assumed by the variable q.
(al, al+ 2) is called the remainder sequence of (a, b) and (ql,"" ql) is called
the quotient sequence of (a, b). Steps 2 and 3 are each executed times; this is the
number of divisions performed, which we denote by D(a, b).

By (13), the computing time for the ith execution of Step 2 is "L(qi)L(ai+ 1).
The computing time for the ith execution of Step 3 is certainly dominated by
L(ai+ 1) since it at most requires copying the digits of a+l and a+2. In an im-
plementation of the algorithm in which a large integer is represented by the list
of its digits (e.g., [4]), such copying is unnecessary, and the computing time for

6 GEORGE E. COLLINS

each execution of Step 3 is 1. For the same reason, we will assume that the
single executions of Steps and 4 have computing times 1. We then have

(17) te(a,b) L(qi)" L(ai+,).
i=1

If instead we were to assume that copying is required in Steps and 3, (17) would
still hold after adding L(a) to the right-hand side. But L(a) L(q)+ L(a2)- L(q)L(a2), so (17) holds in any case.

From (17) we will derive the maximum, minimum and average computing
times of Algorithm E, by analyzing the possible distributions of values of the a
and q, obtaining the codominance equivalence classes of these computing times
as functions of L(a), L(b) and L(c). Thus we consider the decomposition of S
into the sets

(1"8) S,,,,,k {(a, b)’L(a) m and L(b) n and L(g.c.d.(a,b)) k},
with m >_ n _>_ k >= 1. We may verify that each set S,,,,k is nonempty as follows.
Ifm k, then(fl"-l, flm-)S,,,,,.Ifm > k, let a /m-1 + /k-1 andb= fin-1.
Then c g.c.d.(a, b)= fl-1, L(a)= m, L(b)= n and L(c)= k, so (a, b) Sm,,,.
As above, we will write t; (m, n, k) in place of t; (S,,,,,), and similarly for t[and t:.

THEOREM 3. t/ (m, t, k) -- rt(m k + 1).
Proof. Since b a2 > a3 > > a+l, we have by (17) that

(19) t(a, b) - L(b) L(qi).
i=1

Since L(qi) L(qi + 1) and q >= 2 we obtain, by Theorem 2,
l--1

(20) _, L(q)- L q 1-I (q + 1)
i=1 i=1

Since a qiai+ + a+2 > qiai+2 + ai+2, we have qz + < az/a+ 2 for
< l, and hence Y[i-1(qi + 1) < ala2/aa+ 1. Combining this with q at/a+

yields
l-1

(21) qt 1-I (qi + 1) =< ab/c2

i=1

Since L(ab/c2) < L(a2/c2) L(a/c) L(a)- L(c) + 1, (19), (20) and (21)
yield

(22) t(a, b) -< L(b){L(a) L(c) + },
from which Theorem 3 is immediate. |

We now proceed to prove that t(m, n, k) n(m- k + 1), for which pur-
pose we need the following two theorems.

THORFM 4. t(a, b)

_
D(a, b){D(a, b) + L(g.c.d.(a, b))}.

Proof. Let (q,..., q) and (a,..., a/2) be the quotient and remainder
sequences of (a, b), c g.c.d.(a, b) and k L(c). By (17),

(23) t(a, b) >- L(a,).
i=1

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 7

Since a+ 2 0, al+ c and ai qiai+ 4- ai+ 2 ai+ "1- ai+ 2, a simple
induction shows that a/2_i > cFi, where F/ is the ith term of the Fibonacci
sequence defined by F0=0, F1 and Fi+2 =Fi+ Fi+1. But 10, p. 82]
Fi+ >= @i/N//- where 49 (1 + V/)/2, and (2 > N/f SO Fi+ 3 > d/) i. Hence

ll _..2 {/--2)L(ai) > loga (oF/) > /(logt c) + log/ qSi> /(log c) + (log/ b).
i=1 i=2 i=1 2

So fork> 2andl>_4,_, L(ai) _>_ }kl 4-]-d(logt, (/))/2 . kl + 2

i=1

while for k and _> 4,

__12 2L(a)>=](log qS)/2 >- kl +
i=1

For =< 3, 21i 1L(ai) >_ L(c) k kl + 12. So by Theorem 1, part (h), 2li=l L(ai)
> kl + 12 for all k and l, proving the theorem, since D(a, b). |

By an application of Theorem 4, together with an elementary construction
utilizing the generalized Fibonacci sequences F’) defined by F0h) 1, Flh)= h
and ,(h) =Flh) + (h)

ai + 2 --i + 1, one can obtain a proof that t(m, m, k)

_
n(m k + 1).

However, we will abstain from this construction, obtaining the result instead
as a corollary of our analysis, in 5, of the average computing time. Hence we
proceed next to derive the minimum computing time of the Euclidean algorithm.

THEOREM 5. t[(m,n,k) n(m- n + 1) + k(n- k + 1).
Proof. By(17),t{(m,n,k) ;>-L(ql)L(a2),, n(m- n + 1).Sinceq [ai/ai+lJ,

we have qi+l > ai/ai+l and so]-Ili= l(qi + 1) > [I= l(a/ai+ 1) a/c. By (17),

tF.(a, b) _, L(qi)L(ai+ 1) L(c) 2 L(qi) L(c) 2 L(qi 4- 1)
i=1 i=1 i=1

.>= L(c)L(a/c) >= L(c)L(b/c) L(c) {L(b) L(c) + ..
Hence t[(m, n, k) ;>- k(n k + 1) and by Theorem 1, part (c), t[(m,n,k)
)>-n(m- n+ 1) + k(n- k+ 1).

Ifn=k, let a=tim-1 and b=fl"- so that c=fl"-I and D(a,b)= 1. By
(17), this shows that t[(m, n, k) -< n(m n + 1) -< n(m n + 1) 4- k(n k + 1).

If n > k, let a- tim-1
_

ilk-1 and b fl"-1, so that c fl-1, L(a)= m
and D(a,b)=2. Then by (17), t{ (m, n, k) -<:, n(m n + 1) 4-k(n- k+ 1) for
n > k. Application of Theorem 1, part (h), concludes the proof. |

5. The average computing time. As observed in the proof of Theorem 4, if
a b and (al,a2, "", al+l,a+2) is the remainder sequence of (a,b), then

a >= El + >= 491/ Since e > v/, we have/In >= (In a) + 1. That is,

(24) D(a, b) < (In b)-l((ln a)+ 1),

with (In b)-1 2.078.... Dixon established in [6] that for every > 0

(25) ID(a, b) r In al < (In a) 1/2 +:

GEORGE E. COLLINS

for almost all pairs (a, b) with u >_ a >_ b >_ 1, as u -, oo, where

(26) z 12re- 2 In 2,

and we have r 0.84276.... By more elementary means, Dixon proved in [7]
the weaker result that

(27) D(a, b) >= 1/2 In a

for almost all pairs (a, b) with u > a > b >_ as u --, oo. In the following, we will
show how Dixon’s weaker result can be used to prove that the average computing
time of the Euclidean algorithm is codominant with its maximum computing
time of n(m k + 1). Before proceeding to the det".iled proof, however, we shall
present an intuitive sketch.

It is a well-known result (see [11, {}4.5.2, Exercise 10]) that the proportion
of pairs (a, b) with u > a >_ b > for which g.c.d.(a, b) approaches 6re-2 as
u -, oo. We will first generalize this result to the pairs (a, b) with u > a > b >_ v
as u v --, . Next we set u =/,-k+ 1/2 and v =/"-k and conclude, combining
this result with Dixon’s, that, for n k large, at least half of the pairs (a, b) for
which u > a > b >__ v satisfy both g.c.d.(a, b)= and D(a, b) >_ - In a. For each
pair satisfying these conditions and each c with [:- _< c </-/2, we obtain a
pair (2, b) (ac, bc) with g.c.d.(fi, b) c, L() L(b) n and L(c) k. If rn > n,
then from each pair (2, 5) we obtain at least 1/2/m-, pairs (fi, b) of the form
(q + b, b) for which L(fi) m and these also satisfy L(b) n, L(g.c.d.(8, b)) k
and O(c,) >__ 1/2 In/"-. The pairs (,) so obtained constitute at least 0.004f1-2
of all pairs in Sin,n, and t(fi,)_>-n(m- k + 1) for all (c,), so t(m,n,k)
_

n(m k + 1) for n k > h, say. But it is trivial that t(m, n, k)

_
n(m k + 1)

for n k =< h for any constant h, and so t(m, n, k) n(m k + 1).
THEOREM 6. Let u and v be positive integers with u > v, let w u v, and let

q be the number of pairs of integers (a, b) such that u > a, b = v and g.c.d.(a, b) 1.
Then q/w2 6/rc2[=< 2((ln u) + 1)/w + u/we + 1/u.

Proof. Let Vk be the number of integers a such that kla and u > a >= v. Then

(28) Iv,- w/kl < 1,

and vk2 is the number of pairs (a, b) for which klg.c.d.(a, b) and u > a, b _> v. By the
principle of inclusion and exclusion,

(29) q ,u(k)v2,
k=l

where # is the M6bius function. By (28),

(30) ivk2 w2/k21 < 2w/k +

Multiplying (30) by//(k)/W2 and summing, we have, by (29),

(31) Iq/wz /u(k)/kZl < 2H,/w + u/w2,
k=l

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 9

where Hu is the harmonic sum ,= 11/k. Using

(32) la(k)/k rt/6

together with (31) yields

(33) Iq/w2 7r2/61 < 2H,,/w + U/W2 .qt_ 1/k2

k=u+l

But =u+ l|/k2 < j’,Tx -2 dx l/u, and H, =< (lnu)+ 1, which establishes the
theorem after substitution in (33). |

TrmOREM 7. There is a positive integer h such that Jbr n k > h, there are at

least 0.02flin- 2k + pairs (a, b) for which fl,-k + 1/2 > a >= b >= [3"-k, g.c.d.(a, b)
and D(a, b) >= -- In a.

Proof. Set u fl,-+1/2, v fl"-k, w u- v. Since lim,__,o(u/w)
(1 fi-1/2)-1 =< (1 1/xf.)- < 4, it follows from Theorem 6 that

lim (q/w2) 6/2.

Since 6/7C2 > 0.6 and g.c.d.(a, b)= g.c.d.(b, a) there exists an h such that for
n k > hi, there are at least 0.3w2 pairs (a, b) for which u > a > b > v and
g.c.d.(a, b) 1. By Dixon’s theorem there is an h2 such that if n k > h2, then
D(a, b)< 1/21na for at most 0.05 pairs (a,b) with u >_ a, b > 1. Hence if
h max (hl,h2) and n- k > h, there are at most 1/4wz pairs (a,b) for which
u > a >= b >= v, g.c.d.(a, b)= and O(a, b) >= 1/2 In a. The theorem follows since

w => (x/ 1)fl"-’ and (v@ 1)2/ ’ (N/// 1)2/2 0.08.
THEOREM 8. There is a positive integer h such that for n k > h, there are at

least 0.004flm+’- pairs (a, b) such that a b, L(a) m, L(b) n, L(g.c.d.(a, b)) k
and D(a, b) > 1/2 In fl,-k.

Proof. Choose an h for which Theorem 7 holds. For every pair (a, b) satis-
fying Theorem 7 and every integer satisfying ilk-1 C < jk-1/2, we obtain a
pair (ac, bc) with ac > bc, L(ac)= L(bc)= n, L(g.c.d.(ac, bc))= L(c)= k, and
D(ac, bc) D(a, b) >= 1/2 In a => 1/2 In fl,-k. The mapping f((a, b), c) (ac, bc) thus
defined is one-to-one so there are at least

(O.02fl2n-2k+ l)(x//- i)flk- O.O08fl2n-k+

pairs (a, b) with a b, L(a) L(b) n, L(g.c.d.(a, b)) k and D(a, b) >__ 1/2- In fl"-.
If m n, this completes the proof; so assume m > n. For each pair (a, b) with
L(a) L(b) n, there are at least

j [m -1)/a _> [j -1)/j (1 --1)m-n-

pairs (aq + b, a) with L(aq + b) m. Since g.c.d.(aq + b, a)= g.c.d.(a, b) and
D(aq + b, a) D(a, b) + 1, we obtain at least (0.008fiz"-k)(1/2flm-") 0.004flm+n-
pairs (aq + b, a) for which aq + b >= a, L(aq + b) m, L(a) n, L(g.c.d.(qa + b,
a)) k and D(aq + b, a) > 1/2In fl"-. |

10 GEORGE E. COLLINS

THEOREM 9. t(m, n, k) t(m, n, k) n(m k + 1).
Proof. Let c min(1,1/21n fi). By Theorems 4 and 8, there exist h and

C2 > 0 such that

t:(a, b) _>= c2D(a, b){D(a, b) + L(g.c.d.(a, b))} Czcl(n k){cl(n k) +
> Cczn(n k)

for n k > h and for at least 0.004fi"+"-k elements of S,,,,k. Every element of
Sm,,, is of the form (ac, bc) with a < fl"-+ 1, b < fl,-+l and c < fl, so
has at most fl"+"-+2 elements. Hence, t(m, n, k) > O.O04c2c2fl-2n(n k)

n(n- k) for n- k > h. By Theorem 5, t(m,n,k);>-n(m- n + 1) > n
n(n k) for n k =< h. Hence by Theorem 1, part (h), t(m, n, k) >- n(n k).

By Theorem 5, t:(m, n, k)

_
n(m n + 1) so by Theorem 1, part (c),

(34) tz(m, n, k) ;>- n(n k) + n(m n + 1) n(m k + 1).

The conclusion of the theorem is now immediate from Theorem 3, (34) and the
obvious inequality t*(m, n, k) <= t(m, n, k).

REFERENCES

[1] W. S. BROWN, On Euclid’s algorithm and the computation ofpolynomial greatest common divisors,

J. Assoc. Comput. Mach., 18 (1971), pp. 478--504.
[2] G. E. COLLINS, Computing time analyses for some arithmetic’ and algebraic algorithms, Proc. 1968

Summer Institute on Symbolic Mathematical Computation, IBM Corp., Cambridge,
Mass., 1969, pp. 197-231.

[3] The calculation of multivariate polynomial resultants, J. Assoc. Comput. Mach., 18

(1971), pp. 515-532.
[41 The SAC-1 integer arithmetic system---Version III, Tech. Rep. 156, Computer Sciences

Dept., Univ. of Wisconsin, Madison, 1973.
[5] N. G. DFBRUIJN, Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1961.

[6] J. D. DIXON, The number of steps in the Euclidean algorithm, J. Number Theory, 2 (1970), pp.
414-422.

[7] ----, A simple estimatefor the number ofsteps in the Euclidean algorithm, Amer. Math. Monthly,
78 (1971), pp. 374-376.

[8] H. HFILBRONN, On the average length ofa class ofcontinuedfractions, Abhandlungen aus Zahlen-
theorie und Analysis, VEB Deutscher Verlag, Berlin, 1968.

[9] L. E. H1INDL, Integer arithmetic algorithms for polynomial real zero determination, J. Assoc.
Comput. Mach., 18 (1971), pp. 533-548.

[10] D. E. KNUTtt, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-
Wesley, Reading, Mass., 1968.

[11] The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley,
Reading, Mass., 1969.

[12] D. R. MUSSFR, Algorithmsfor Polynomial Factorization, Ph.D. thesis, Tech. Rep. 134, Computer
Sciences Dept., Univ. of Wisconsin, Madison, 1971.

SIAM J. COMPUT.
Vol. 3, No. 1, March 1974

STACK REPLACEMENT ALGORITHMS FOR TWO-LEVEL
DIRECTLY ADDRESSABLE PAGED MEMORIES*

R. R. MUNTZ AND H. OPDERBECK"

Abstract. In this paper we consider the application of the stack algorithm concept to a two-
level paged storage hierarchy in which both levels are directly addressable by the central processor.
Since both levels are directly addressable, pages need not reside in the first level of memory for a

reference to be completed. The effectiveness of a page replacement algorithm in such a storage hier-
archy is measured by the frequency of references to the first level of memory and the number of page
promotions. It is shown that the stack algorithm concept can easily be extended to apply to two-
level directly addressable memory hierarchies. A class of page replacement algorithms called stack
replacement algorithms is defined. An efficient procedure exists for collecting data on the performance
of stack replacement algorithms.

Key words, memory management, memory hierarchies, paging, stack algorithms

1. Introduction. The performance of a virtual memory system is to a large
extent determined by the efficiency of moving information between the different
levels of the physical memory hierarchy. In the case of two-level paging systems,
the page traffic between the two levels is one of the most important design factors.
Most of these systems use the page as the unit of information transfer, and refer-
enced information must be in the first level of the storage hierarchy for a reference
to be completed. This implies that whenever an information item is referenced
which is not in the first level, the entire page on which this information item resides
is transferred. Because of the locality of page references, this is in many cases an
efficient policy. However, there are usually some pages which are referenced
rather infrequently. For these pages it would be more efficient to transfer the
referenced information item directly to the CPU and leave the corresponding page
in the second-level memory. Memory hierarchies that use this strategy are called
two-level directly addressable paged memories. The IBM 360/67 installation at
Carnegie-Mellon University is an example of a computer system with this sort
of a memory hierarchy 2], [3], [5]. Developments in torage technology which
have made bulk core storage more economical make systems with two-level
directly addressable memories more and more likely.

In this paper the first level of the two-level directly addressable memory
hierarchy is assumed to be faster, smaller and more expensive than the second
level. The second level is assumed to be large enough to contain all of the program
and data.

The movement of a page from the second to the first level of memory will
be called a page promotion. The first level of memory is assumed to consist of a
fixed number, m, of page frames. Therefore page promotions and page replace-
ments always occur at the same time if the first level of memory is full. For two-
level directly addressable memories, the page promotion and page replacement
decisions are usually not chosen independently but are part of a single policy. In

Received by the editors May 25, 1973, and in revised form September 7, 1973.
Computer Science Department, University of California at Los Angeles, Los Angeles, California

90024. This research was supported by the National Science Foundation under Grant GJ 809 and
the U.S. Office of Naval Research, Mathematical and Information Sciences Division, under Contract
N00014-69-0200-4027, NR 048-129.

12 R. R. MUNTZ AND H. OPDERBECK

referring to a policy we will use the term replacement policy (or algorithm) rather
than the more exact but clumsier term, "promotion/replacement policy". Page
promotions may be done only "on demand", i.e., a page in the second level of
memory is promoted only at a time when it is referenced, or in a nondemand
paging manner, i.e., pages may be promoted at any time.

Let N {0, 1,2,..., n} denote the set of pages for a given program. A
program’s dynamic behavior is, for our purposes, given by its reference string
co r lr2 rt..., where r N and r is the tth page referenced for >= 1.

Let

the time to reference the first level of memory,

(2 the time to reference the second level of memory,

the time to move a page from the second level of
memory to the first level of memory.

Let co be a given reference string and let Ico[denote its length. Let n denote
the number of references to a page which resides in the first level of memory, n2

denote the number of references to a page which resides in the second level of
memory, and n3 denote the number of page promotions. Clearly, n + n2 ICO]"
For a first level memory with given size, the average access time is given by

averag6 access time nl 61 + n2 (2 + n3
nl +n2

We assume that m < n and that 61 < (2 < A. The size of the first level of memory
and the policies that are used in managing the memory hierarchy will determine
nl, n2 and n3 for any given reference string.

The average access time is a common performance measure also for storage
hierarchies in which only the first level is directly addressable. However, there is
a much different set of policies from which to choose when both levels of memory
are directly addressable. There are two fundamentally distinct approaches that
can be taken in this case. First, a decision can be made a priori as to which pages
should reside in the first level. For example, an analysis of system code or pro-
duction programs could be used to determine which pages are most frequently
referenced and a decision made as to the level on which they should reside. The
second approach is to dynamically determine which pages should reside in the
first level based on some measure of the current frequency of reference to the
pages. This latter approach has been considered by some authors and seems to
hold some promise [1], [6]. Much more experimental work is necessary to
evaluate the efficacy of such dynamic management policies especially since they
often require additional hardware.

The purpose of this paper is to show how the stack algorithm concept [-4] is
applicable to measurement studies of page replacement policies for a two-level
directly addressable paged memory hierarchy. As in the more usual case in which
only the first level is directly addressable, the stack algorithm concept can be
utilized to efficiently collect experimental data on the performance of a given
policy. A class of replacement policies called stack replacement algorithms is

STACK ALGORITHMS 13

defined. In one pass through a reference string, one can efficiently collect the
data (n 1, n2 and n3) necessary to evaluate the performance of the stack replace-
ment algorithm on this reference string for all sizes (number of page frames) of
the first level of memory. The procedure for processing a reference string and
collecting this data will be called a stack processing procedure.

In 2 and 3 we consider two general classes of replacement rules for two-
level directly addressable memories. In 2 the replacement rules are such that a
promotion of some page x may only take place as a result of a reference to page x
("demand paging"). In 3 we consider replacement rules in which promotions
and replacements take place at fixed intervals. Examples of both types of stack
replacement algorithms are given, and the corresponding stack processing pro-
cedures are described. It is also shown that these stack replacement algorithms
have the property that for any reference string, the number of references to the
first level (n l) is nondecreasing with the size of the first-level memory. The number
of page promotions (n3), however, may increase with the size of the first-level
memory. This implies that the average access time may increase with an increase
in the first-level memory size.

2. Stack replacement algorithms using continuous updating. For any replace-
ment policy A, let St(A, m) be the set of those pages that would be in the first
level of memory at time (just after processing rt) if there were m page frames in
the first level of memory. For the present we assume that pages can be promoted
to the first level of memory only when they are referenced (this is similar to de-
mand paging). Page replacements from the first level of memory are assumed to
take place only when the first level of memory is full and an additional page is
promoted to the first level. Thus, St(A, m) may only contain pages that have been
referenced up to time t.

A replacement policy A is a stack replacement policy iff

St(A, m)
_

S,(A, m + 1)Vt, Vm, Vco,

i.e., iff the inclusion property is satisfied. If the inclusion property holds, then we
can define an ordered list of the pages thus far referenced, _St(A), such that the
first m pages in this list are the pages that comprise St(A, m). Of course, if < m
pages have been referenced up to time t, then St(A, m) is comprised of only those
pages. St(A) is called the stack. If the stack algorithm A is understood, we simply

write St(m and S_ for St(A, m) and St(A), respectively.
If a page x has been referenced at least once up to time t, then it appears at

some position in the stack. Let Dt(x denote the position of page x in the stack
just after processing reference rt. Following the usual notation, we let Dt(x
if x has not yet been referenced.

As stated above, we assume that if a page is promoted to the first level of
memory at time t, then the page promoted is rt. If the first level of memory was
full, then some page must be replaced.

Let y,(m) be the page replaced from the first level of memory of size m at
time (i.e., due to reference rt) if a replacement is made, or if no replacement
is made. Clearly St(m St_ l(m) + r yt(m).

14 R. R. MUNTZ AND H. OPDERBECI

It is not difficult to show that the inclusion property holds iff

y,(m) or {S,_x(m+ 1)- S,_l(m)} ifr, qS,_l(m+ 1),
Yt(m + 1)

Q5 if r St__ l(m + 1).

In words, the page replaced from an (m + 1)-page first-level memory is either the
page replaced from an m-page first-level memory or the additional page that is
in the (m + 1)-page memory but not in the m-page memory.

We now briefly review the stack processing procedure for a storage hierarchy
in which only the first level is directly addressable. For a demand paging algorithm
when only the first level of memory is directly addressable, we have

l(m) if r, e S,_ l(m),

St(m St_ l(m) + r, if r, q S,_ l(m) and IS,_ l(m)l < m,

S,_ l(m) + r, y,(m) if r, q S,_ (m) and IS,_ (m)l m,

where, for any set S, ISI denotes the cardinality of S. Note that if y,(m + 1) 4: ,
then y,(m) . This follows since if yt(m + 1) # , then IS,_ l(m + 1)l m / 1,
which implies that at least m + distinct pages have been referenced and there-
fore IS,_ a(m)l-- m. Also r, S,_ x(m) due to the inclusion property. This shows
the well-known property that the page fault rate for stack replacement algorithms
is nonincreasing with memory size if only the first level of memory is directly
addressable. Figure shows the stack processing procedure for this case.

Page S_t.1, Dt. (rt) k

IS_t.l=

St (1)

St (2) S (2)

St (3) St(3)

St. (4) S (4)

St (k-l) St(k-l)

rt St(k)
Yt (k-1)

St. (k+l) St(k+1)

S"1(’) q St(’’

Page St.1, Dt. (rt)

St. (1)

St. (2)

St. (3)

St. (4)

St. (5)

St.

t(2)

t(3)

t(4)

St(2

St(3)

St(4)

St(5)

s.()

S. (f+l
Y (q)

FIG. 1. Stack processing procedure with one level of directly addressable memory

Now consider the case in which both levels of memory are directly address-
able. There is no longer the condition that a referenced page which resides in the
second level must be promoted to the first level of memory. Now the decision as
to whether or not to promote the referenced page to the first level may be a

STACK ALGORITHMS 15

function of the current priority of the referenced page and the priorities of the
pages currently residing in the first level. We assume that the current priority of
a page is equal to some measure of its frequency of use. The priority of a page x
at time will be denoted by pt(x).

The following general class of replacement policies is considered. We assume
there is a priority threshold PTp such that a referenced page is not a candidate
for promotion unless its current priority is at least PTp. Similarly, a page is not
a candidate for replacement unless its current priority is less than some threshold
PT. If the referenced page is a candidate for promotion and several pages are
candidates for replacement, then the page with minimum current priority is
replaced. PTp and PT are not necessarily constant thresholds but may depend on
the reference string. Some examples of such algorithms are in order.

Example 1. The referenced page always replaces the page with the lowest
frequenc, of reference.

PT 0

PT_=

Example 2. The referenced page replaces any page with a lower priority (or
frequency of reference).

PTv =- O

PT =_ p,(,)

Example 3. The referenced page is a candidate for promotion if it has a
current frequency of reference greater than or equal to K (but can only replace
a page with a lower frequency of reference).

PTp= KI >O
PT Pt(rt)

Example 4. The referenced page may be promoted only if its current frequency
of reference is at least K but can only replace a page with a frequency of reference
less than K2.

PTp=- KI >O
PT K2 <

Example 5. The referenced page r is always a candidate for promotion, but
it can only replace a page y if Pt(Y) < Pt(rO H. H is a constant which is chosen
to prevent rapid cycles of page x replacing page y, page y replacing page x, etc.

It is clear that for this class of algorithms,

y,(m)

min Ist_ (m)]

ifp,(rt) < PTp or IS,_,(m)l < m

or pt(min IS,_ l(m)]) >_ PT,
otherwise.

16 R. R. MUNTZ AND H. OPDERBECK

Here min [S,_l(m)] denotes the lowest priority page in S,_(m). It is easy to
verify that y,(m + 1) yt(m) or S,_ l(m + 1) S,_ l(m) or 3. However, note that
it is possible that y,(m + 1) 4: while y, . This can occur if p,(min IS,_ (m)])
>= PT but p,(min [St_ l(m + 1)]) < PTr. Thus the additional page in the (m + 1)-
page first-level memory is the only replaceable page in this case.

The stack processing procedure for this class of algorithms is very similar
to the stack processing when only the first level of memory is directly addressable.
If p,(r,) < PTp or if all pages with stack distance less than D,_ l(r,) have priorities
greater than or equal to PT, then there is no change in the stack. If r, does re-
place a page higher in the stack, say page x, then x is the page with the smallest
stack distance whose priority is less than PT. Let page x be at stack distance 1,
i.e., D,_ (x) 1. The stack processing procedure is illustrated in Fig. 2.

Page S_t.1 Dr. (r k Page =t.l’ Dt-1 (rt}

FIG. 2. Continuous stack processing with two levels of directly addressable memory

3. Stack replacement algorithms using batch updating. If only the first-level
memory is directly addressable, the processing is interrupted and the page re-
placement algorithm is applied whenever a page in the second-level memory is
referenced. In case of a two-level directly addressable memory, on the other
hand, the processing need not be interrupted when a page in the second-level
memory is referenced. Processing can continue by directly referencing the re-
quired information item in the second-level memory. Therefore we do not have
to apply the page replacement algorithm at each reference to the second-level
memory. The two levels of memory can be managed in a truly nondemand paging
manner.

STACK ALGORITHMS 17

As an example, let us assume the page replacement algorithm is applied in
intervals of some constant number of references. After each interval, a replace-
ment of zero, one or more pages takes place. These replacements could be based
on statistics about reference frequencies gathered during the last one or more
intervals. Since each application of the page replacement algorithm may result
in the replacement of several pages, such an algorithm will be called a batch
updating page replacement algorithm.

Such a batch updating replacement algorithm has the following advantages.
The processing is interrupted less frequently, and therefore the overhead associated
with these interruptions is reduced. If the page transfer is controlled by a separate
storage channel, the processor can be switched to another process during the
page transfer. The frequency of this processor switching can be reduced if a
batch updating replacement algorithm is used. In addition, the implementation
of such a scheme appears to be simpler.

The conditions necessary for a batch updating page replacement algorithm
to be a stack replacement algorithm are different from those for continuous up-
dating. Let the batch replacement be initiated immediately after reference rt,
i.e., St_ l(m) and St(m are, respectively, the sets of pages in an m-page memory
immediately before and after the batch replacement. Further, let St(m be the
set of pages which are promoted to the first-level memory and Y(m) be the set of
pages that are replaced.

A batch updating page replacement algorithm is a stack replacement
algorithm iff
(1) St(m c_C_ Xt(m + 1) + z,

(2) Y(m + 1)

Y(m) + z,

(3) if z X,(m), then z q Y,(m + 1),

where z is the additional page in the (m + 1)-page memory, i.e., St_l(m + 1)
St_ l(m) + z. (The proof is given in Appendix A.)
Now consider a batch updating page replacement algorithm with two fixed

thresholds PT and PTp, i.e., only pages with a current priority less than PT are
candidates for replacement and only pages with a current priority greater than or

equal to PTp are candidates for promotion. Also let PTp > PT, i.e., every pro-
moted page has a higher priority than any of the replaced pages. Let us assume
that for a given size of the first-level memory, there are r candidates for replace-
ment and s candidates for promotion. Consider the following batch replacement
policy"

1. If there are s candidates for promotion but only r < s candidates for

replacement, then the r candidates for replacement are replaced by the

pages with the highest current priority.
2. If there are r candidates for replacement but only s =< r candidates for

promotion, then the s pages with the lowest current priority are replaced.
The proof that such a batch updating page replacement algorithm does not

violate any of the conditions (1)-(3), and that it therefore is a stack replacement
algorithm is given in Appendix B.

18 R. R. MUNTZ AND H. OPDERBECK

The stack processing procedure for the case of fixed thresholds and batch
updating is a generalization of the case of continuous updating. It consists of a
sequence of stack updating operations as described in the previous section. This
shows informally that this batch updating page replacement algorithm is a stack
replacement algorithm since each step preserves the inclusion property. The
sequence of the individual stack updating operations is important since the
pages with the highest priorities are promoted if there are more candidates for
promotion than candidates for replacement.

Let us assume the stack contains s pages with a priority greater than or
equal to PT,. Further, let these s pages be denoted by xx, x2, "", xs_ x, xs, in de-
creasing priority order. The stack processing procedure consists of s "continuous-
type" updating operations. The first of these s operations is done as if page x
had been referenced in the case of continuous updating with fixed thresholds
PT and PTp. This transforms stack _St, into stack _SIx), where t’ is the time of the
most recent batch replacement operation. Thus t’ is the time interval between
successive stack updating operations. Similarly, _SI x) is transformed into _S2) by
updating _SI x) as if page x2 had been referenced, etc. This procedure results in s
intermediary stacks _St, SI x), _s12), _sls) _s,. These intermediary stacks need
not be distinct since any of the s individual updating operations may leave the
stack unchanged. After these s continuous-type stack updating operations, the
new stack, _S is created. This stack then remains unchanged during the next

t’ references.
To see that this stack processing procedure is correct, we give the following

informal arguments. Consider the set of pages in the first m stack positions (for
convenience we assume the stack contains at least m pages) and how this set of
pages changes as a result of the stack updating. As each of the pages in the se-
quence x, x2, ..., x is processed in turn, the following cases can occur:

1. If Dt,(xi) <= m,

2. If Dt,(xi)> m and there is still a
replaceable page with stack dis-
tance less than or equal to m,

3. If Dt,(xi) > m and there are no
longer any replaceable pages with
stack distance less than or equal
to m,

then no change is made to the set
of pages in the first m stack posi-
tions.
then page x replaces the mini-
mum priority page in the set of
pages in the first m stack posi-
tions.
then no change is made to the
set of pages in the first m stack
positions.

We simply note that as long as there are replaceable pages in the first m
stack positions, then processing a page xi with stack distance greater than m will
cause xi to replace the lowest priority page. Note that if we ever have case 3 (i.e.,
we have exhausted the replaceable pages) then the highest priority promotable
pages with stack distance greater than rn have replaced all the replaceable pages.
This follows since the sequence x l, x2, "’, xh is in decreasing order by priority.

Consider now the case where a page y is replaced by a page x iff pt(x) > Pt(Y)
+ H. If this rule is applied to a batch replacement procedure, the total number of

STACK ALGORITHMS 19

replacements is clearly dependent on the sequence of individual replacements. To
preserve the inclusion property, the following stronger condition is needed for
the batch replacement algorithm:

p,(min X,(m)]) > p,(max Y(m)]) + H.

In words, the priority of the page with the lowest priority among the promoted
pages must be greater than the constant H plus the priority of the page with the
highest priority among the replaced pages. The proof that this replacement
policy represents a stack algorithm is similar to the proof given in Appendix B.

The stack processing procedure in this case is similar to the stack updating
in the case of fixed thresholds, i.e., it consists of a sequence of continuous-type
updating operations. It is again important that the individual stack updating
operations are done in order of decreasing priority of the pages in the stack. This
guarantees that the stronger condition for the batch updating is satisfied and that
the pages with the highest priorities are promoted. The continuous-type stack
updating operation for some page x is done as if page x had been referenced in
the case of continuous updating with the thresholds PT 0 and PT p(x) H.

4. Data collection. As in the more usual case in which only the first level of
memory is directly addressable, there is a general method of data collection which
can be applied to any stack replacement algorithm. We first consider determining
the number of references to the first level of memory (n 1). This performance
measure corresponds to the success function as defined in [4]. It can be obtained
in the same way. That is, we keep a counter D for each stack position (i 1, 2,
.., n,). Initially D 0 for all i. For every page reference the stack distance
of the referenced page is determined and the corresponding counter incremented
by 1. When the stack processing of the reference string is finished, the sum

2=IDi is equal to the number of references to the j-page first-level memory.
We obtain the fraction of references to the first level of memory by dividing this
sum by the total number of references. Since D >= 0 for all i, the percentage of
references to the first-level memory is a nondecreasing function of the first-level
memory size.

If only the first level of memory is directly addressable, every referenced
page which does not reside in the first level must be transferred to the first level.
The number of references to the second level of memory is therefore equal to the
number of page faults, i.e., ’=j+ID + Doo. In the case of two-level directly
addressable memories, a reference to a page in the second level does not neces-
sarily cause a page promotion. The number of page promotions to a j-page first-
level memory can therefore not be derived from the final values of the counters Di.

The number of page promotions (n3) can be obtained for all sizes of the
first-level memory in one pass through the reference string. F’or this purpose we
keep a second set of counters E (i 1, 2,..., n, oo). Initially Ei 0 for all i.
These counters will be updated in such a way that ’=j+ 1Ei + Eo is equal to the
number of page promotions to a j-page first-level memory after the stack proc-
essing of the reference string. Let us assume that a page at stack position k is
moved up in the stack to position as shown in Fig. 2. This stack updating results
in a page promotion for the first-level memories of the size l, + 1,..., k 1.

20 R. R. MUNTZ AND H. OPDERBECK

We therefore have to increment the counter E by 1. However, for the first-level
memories of the size 1, 2, ..-, 1, this stack updating does not cause a page
promotion. Therefore, the incrementing of counter Ek must be offset by dec-
rementing the counter E by 1. The general rule for updating the counters is:
whenever a page is moved up in the stack, the counter for the stack position where
the page came from is incremented by and the counter for the stack position
where the page is inserted is decremented by 1.

Since the counters E are incremented as well as decremented, we can no
longer assume that Ee >-_ 0 for all i. As a result, the sum ET=j+I E + Eo is in
general not a strictly nonincreasing function of j. Therefore an increase in the
size of the first level of memory may increase the number of page promotions.

Table shows an example of the stack processing for a two-level directly
addressable memory. We consider the case of continuous updating with fixed
thresholds. The priority of a page x is given by the number of references to page x
among the last seven references divided by seven. As an initial condition it is
assumed that there were no references to any of the pages in the past. The initial
priorities are therefore all equal to zero. In this example, the fixed thresholds are
chosen arbitrarily to be PTp - and PT

The last column of Table shows the final value of the counters D and Ee.
For a 1-page first-level memory, the fraction of references to the first level is 1/2
and the number of page promotions is 5. For a 2-page first-level memory, the

TABLE
Example of a continuous stack processing procedure

PT I/7 PT 3/7p

Reference
String 2 2 2 3 2

2 3 3
Stack 2 2 3 3 3 2 2 3 3 3 2

3 2 2 2 2 3 3 2 2 2 2 2

Priority I/7 I/7 I/7 2/7 3/7 4/7 5/7 4/7 4/7 4/7 3/7 3/7 3/7 2/7 2/7

of 2 0 I/7 I/7 I/7 I/7 I/7 I/7 2/7 2/7 2/7 2/7 2/7 2/7 2/7 2/7

Pages 3 0 0 I/7 I/7 I/7 I/7 I/7 I/7 I/7 I/7 2/7 2/7 2/7 3/7 3/7

D 0 0 0 0 2 3 3 3 3 3 4 5 5 5

D
2

0 0 0 0 0 0 0 0 2 2 2 3 3

D
3

0 0 0 2 2 3 3 3 3 3 4

D 2 3 3 3 3 3 3 3 3 3 3 3 3 3

E, -I -2 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5

E
2

0 0 0 0 0 0 0 -I -I -2 -2 -2 -2 -I -2

E
3 0 0 0 2 2 3 3 3 3 4

E 2 3 3 3 3 3 3 3 3 3 3 3 3

STACK ALGORITHMS 21

fraction of references to the first level increases to . However, the number of
page promotions also increases to 7. This shows that the allocation of an addi-
tional page frame may actually increase the number of page promotions.

5. Conclusions. The stack algorithm concept can be extended to the evalu-
ation of two-level directly addressable memory hierarchies. Measurement data
on the percentage of references to the first-level memory and the number of page
promotions can be collected for all sizes of the first-level memory in one pass
through the reference string. The stack replacement algorithms for two-level
directly addressable memory hierarchies can be used in a continuous updating
or a batch updating mode, i.e., the replacement can be made after each reference
or the updating can be deferred for some time, thus reducing overhead costs.
These evaluation techniques should be very helpful in the design of two-level
directly addressable memory hierarchies.

Appendix A. Proof of conditions for batch updating. The proof is given in
two parts.

1. Every stack replacement algorithm satisfies (1)-(3).
(i) Let v Xt(m and v 4 z; therefore v q St_ l(m + 1) because of the in-

clusion property. This implies v Xt(m + 1) since St(m
_

St(m + 1). The case
z Xt(m works trivially.

(ii) Let v Yt(m + 1) and v 4= z; therefore v St_ l(m) because of the in-
clusion property. This implies v Yt(m) since St(m St(m + 1) and v St(m + 1).
The case z Y(m + 1) works trivially.

(iii) If z Xt(m), then z St(m + 1) and therefore z Yt(m + 1).
2. Every page replacement algorithm that satisfies conditions (1)-(3) is a

stack replacement algorithm. Since the first-level memory is empty initially, the
inclusion property holds at time 0. Therefore, we have to show that the in-
clusion property is preserved if the batch updating is done according to the
conditions (1)-(3). Let v St(m). We have to show that v St(m + 1).

(i) Let v St-l(m); therefore v Yt(m) and v z. Because of condition (2)
v Yt(m + 1). But St_ l(m)

_
St_ (m + 1) now implies v St(m + 1).

(ii) Let v Xt(m and v 4: z; then v Xt(m + 1) because of condition (1),
and therefore v St(m + 1).

(iii) Let v Xt(m) and v z; therefore v St_ l(m + 1). Because of condition
(3), v Yt(m + 1), and therefore v St(m + 1).

Appendix B. Proof for batch updating with fixed thresholds. Let minr St(m)]
denote that subset of St(m which is comprised of the r pages with lowest priority.
Let max ISt(m)] be similarly defined for the highest priority pages in St(m). The
sets Xt(m and Yt(m) can now be defined as follows:

Xt(m) max EN- S,_ (m)],

Y(m) min [St_ (m)3,

where r is such that if x is the ith page in N St_ (m) in increasing priority

22 R. R. MUNTZ AND H. OPDERBECK

order and Yi is the ith page in St_ l(m) in decreasing priority order, then

(4) pt(xi) >= PTp, <= <= r,

(5) Pt(Yi) < PT, <= < r,

(6) at least one of the conditions (4) and (5) is not satisfied for r + 1.

Since the inclusion property holds initially, we have to show that conditions
(1)-(3) are satisfied under the assumption that St_ (m) St_ (m + 1).

Assume S,_ (m + 1) St_ (m) + z.

(1) X,(m)
_

Xt(m + 1) + z.

Let x Xt(m be the ith page in N- St_ l(m) in increasing priority order.
Clearly, if x z, then condition (1) holds. If xi # z, :! at least pages in St_ l(m)
with priority less than min (PT, pt(Xi)). Since St_ l(m) St_ l(m + 1), the same is
true for St_ (m + 1). Since there are less than pages in N St_ (m) with priority
greater than pt(x3, it follows that x Xt(m + 1).

(2) Y(m + 1)
_

Yt(m) + z.

Let ye Yt(m + 1) be the ith page in S _(m + 1) in decreasing priority
order. If y z, condition (2) obviously holds. If Yi # z, 3 at least pages in
N St- l(m + 1) with priority greater than Pt(Y3 and greater than or equal to PTp.
The same is true for N-St_l(m) since N-St_(m+ 1)__N-St_(m).
But there are less than pages in St_ l(m) with priority less than Pt(Yi); therefore
Yi Yt(m)

(3) if z Xt(m), then z q Y(m + 1).

Let z x. Then :1 at least pages in St-(m) with priority less than
rnin (PT;, pt(z)). The same is true for St_ l(m + 1) since St_ (m)

_
St_ (m + 1).

However, there are exactly pages in N St-l(m) with priority greater than
pt(z). Since N S _(m + 1)

_
N S _(m), there are at most i- pages in

N St_ (m + 1) with priority greater than pt(z). Thus z Yt(m + 1).

REFERENCES

1] J. L. BAER, On program placement in a directly executable hierarchy of memories, to appear.
[2] R. E. FIKES, H. C. LAUER AYD A. L. VAREHA, Steps towards a general purpose time-sharing system

using large-capacity core storage and TSS/360, Proc. 23rd National ACM Conf. ACM
publication, 1968, pp. 7-18.

[3] H. C. LAUER, Bulk-core in a 360/67 time-sharing system, Proc. AFIPS 1967 Fall Joint Computer
Conf., pp. 601-609.

[4] R. L. MATTSON, J. GECSEI, D. R. SLUTZ AND I. L. TRAIGER, Evaluation techniques ..for storage
hierarchies, IBM Systems J., 9 (1970), pp. 78-117.

[5] A. L. VAREHA, R. M. RUTLEDGE AND M. M. GOLD, Strategies for structuring two-level memories
in a paging environment, Proc. 2nd ACM Symp. on Operating Systems Principles, ACM
publication, 1969, pp. 54-59.

[6] J. C. WILLIAMS, Experiments in page activity determination, Proc. AFIPS 1972 Spring Joint Com-
puter Conf., AFIPS Press, Montvale, N.J., pp. 739-748.

SIAM J. COMPUT.
Vol. 3, No. 1, March 1974

PICTURE SKELETONS BASED ON ECCENTRICITIES OF
POINTS OF MINIMUM SPANNING TREES*

R. E. OSTEEN" AND P. P. LIN{

Abstract. Special properties of the eccentricities of points of trees are developed. An algorithm
based on those properties is presented for the generation of all diametral paths of a given nontrivial
tree.

The algorithm is adapted for a certain picture processing application. Given a discrete spatially
quantized picture, a grey-distance is defined for neighboring picture cells to produce a graph with
weighted lines. A minimum spanning tree of a connected component of the graph is submitted to the
modified algorithm, which produces a skeleton of the picture object. The skeleton is further reduced
to a smaller tree with weighted lines, viz., the unique tree homeomorphic to the skeleton having no
point of degree two. This reduced skeleton with weighted lines constitutes a very compact repre-
sentation of the picture object, facilitating object classification.

Key words, eccentricity, diametral path, tree, graph theory, minimum spanning tree, picture
skeleton, feature extraction, picture processing

1. Introduction. A discrete spatially quantized picture is a matrix over a
finite set of grey levels. This paper is concerned with a more compact represen-
tation of the objects of such a picture for purposes of pattern classification.

A grey-distance is defined for neighboring picture cells to produce a graph
with weighted lines. A minimum spanning tree (MST) of a component of the
weighted graph is then found. A pruning process then is performed on the MST
to produce the object skeleton. Further substantial reduction in object rep-
resentation is achieved by replacing branches of the skeleton by suitably weighted
lines. The reduced skeleton--which is the unique tree homeornorphic to the
skeleton having no point of degree two--constitutes the input to an object recog-
nition or pattern classification process.

The remainder of the paper is organized as follows. First, theorems are
presented concerning the special properties of the eccentricities of points of trees.
These properties provide the basis for an efficient algorithm for the identification
of all the diametral paths of a given nontrivial tree. This algorithm is then modi-
fied for the present application, resulting in the tree pruning algorithm for use
on an MST of an object from a picture. The method is illustrated by means of
a chromosome picture.

2. Definitions and theorems. The following definitions and terminology are
as in Harary 23. A graph G ((G), c(G)) consists of a nonempty finite set
Y/(G) of points and a set of lines (G) {Y/’ :Y/’ (G) and I//’ 2}. (A line
{x, y} is commonly rendered more briefly as xy.) A walk in G of length n is a se-
quence of points of G, vo,v,..., v, such that v_vi6(G) for each i= 1,2,
.., n. A path in G is a walk in which no point has more than one occurrence,

i.e., if : j, then /)i : /)j for i, j 0, 1, 2, ..., n; a cycle in G is a walk of length

Received by the editors January 11, 1973, and in revised form June 22, 1973. This work was
done at the University of Florida Center for Informatics Research. It was supported by the Office
of Naval Research through the Information Systems Program under Contract no. N00014-68-A-
0173-0001, NR 049-172, and by the Army Research Office, Durham, under Grant no. DA-ARO-D-
31-124-70-G92.

" Electrical Engineering Department, Florida Institute of Technology, Melbourne, Florida 32901.
:l: Bell Telephone Laboratories, New Brunswick, New Jersey 08903.

23

24 R. E. OSTEEN AND P. P. LIN

greater than two in which v0 v, but no other point has a multiple occurrence,
i.e., if 0 < < n and : j, then vi 4: vj for j 0, 1, ..., n. G is a connected graph
in case each pair of its points are joined by a path. That is, if u U(G), v f(G),
and u 4: v, then there exists a path in G, Vo, v l, ..’, v,, with Vo u and v, v.

In a connected graph G (U(G), g(G)), the distance d(u, v) between points
u and v, is defined to be zero if u v and to be the minimum of the lengths of
paths joining u and v otherwise. The eccentricity e(v) of a point v is the maximum
over points u of d(u, v). The center (g(G) of G is the subset of consisting of those
points (the central points) of least eccentricity. The radius R(G) is the least eccen-
tricity and the diameter D(G) is the greatest eccentricity of the points of G. A
radial path in G is a path of length R(G) from a central point to a point whose
distance from the central point is R(G); a diametral path in G is a path of length
D(G) joining a pair of points whose distance is D(G).

A tree T ((T), g(T))is a connected graph with no cycles. If I(T)I 1,
T is the trivial tree; otherwise, T is a nontrivial tree. A leaf or endpoint of a non-
trivial tree is a point of degree one, i.e., a point adjacent to just one other point.
A nontrivial tree has at least two endpoints. 5(T) denotes the set of all endpoints
of T. The periphery @(T) of the nontrivial tree Tconsists of the points of T (the
peripheral points) having maximum eccentricity. Thus, e(v)= D(T) if and only
if v (T).

Each pair of points of a nontrivial tree T are joined by a unique path. Con-
sequently, if x, y, ..., z is a path in T, if w # y and w is adjacent to x, then w, x,
y, ..., z is the path in T from w to z. From this follows that if d(u, v) e(u), then
v .q)(T).

If T has more than 2 points, then Y)(T) 4: U(T), i.e., some points of T are
not endpoints. If x SO(T) and xy g(T), then e(y) e(x) 1. The removal from
T of the, points of any subset of ’(T) produces a subtree of T. For each point
x of T’, the subtree of T obtained by removing all the endpoints of T, e’(x) e(x)

1, where e’ denotes eccentricity in T’. In particular, D(T’)= D(T)- 2 and
R(T’) R(T) 1.

Some other rather obvious consequences of the definitions are as follows,
where T is a tree of more than two points. Every peripheral point is an endpoint.
Each diametral path in T joins a pair of peripheral points. If u is a peripheral
point, there is a peripheral point v to which u is joined by a diametral path. T
has at least two peripheral points. The set of diametral paths of T coincides with
the set of paths of T of greatest length.

More pertinent properties are stated in the following theorems, whose
proofs are given in the Appendix.

THEOREM 1. Let T be a tree of diameter D(T), radius R(T) and center (T).
Then

(i) if D(T) is even, then Cg(T) is a singleton; if D(T) is odd, then (g(T) consists

of a pair of adjacent points;
(ii) e(x) R(T) + min {d(x, c)’c Cg(T)}, for any point x of T; and

(iii) if Xo, x 1,..., XO(T) is a diametral path in T, then for each O, 1, 2,...,
D(T), e(xi)= max {i,D(T)- i}.

THEOREM 2. If U (T) C(T), then there is exactly one point v such that
uv o(T) and e(v) e(u) 1.

PICTURE SKELETONS 25

Because of Theorem 2, one can define on Y/-(T)- Cg(T) the predecessor
function: pred(x)= y t/(T) such that e(y)= e(x)- and xy g(T). It is not
uncommon to represent a graph by the sequence of (deleted) neighborhoods of
the points, where the neighborhood V(x) of a point x consists of all those points
y such that xy g(G). The predecessor function may then be specified as follows:
if xe V(T)- C(T), then pred(x) is the unique point y eY(x) such that
e(x) e(y) + 1.

Indeed, the predecessor function permits a very compact representation of a
tree. Let V(T) 1, 2, ..., p). Then the domain of the predecessor function can
be extended to V(T) as follows if x (T), then pred(x) 0. This function, which
amounts only to an array of p numbers, uniquely specifies the tree, i.e., provides a
complete representation of the tree. (The possibility of such a compact representa-
tion is not astonishing, since g(T) consists ofp lines.) The predecessor function
is illustrated below; the first tree has a center of one point, the second has a center
of two points.

x pred(x)

3
e=2 2 3

3 4
4 0

e=3 5 4
6 5
7 4

e=4 8 7
9 7
10 7

(a) A tree of one central point

x pred(x)

3

e=3 2 3
3 5
4 5
5 0

e=4 6 0

7 6
8 7

e=5
9 7
10 7

(b) A tree of two central points

FIG. 1. Illustrations of the predecessor function

With the aid of these theorems, a number of other propositions concerning
a tree T of three or more points may be readily proved. Each radial path in T
contains (T). Ifx and y are adjacent points not both in (T), then le(x) e(y)l 1.
Thus if x C(T), then there is just one point y ff(x) such that e(x) e(y) +
for each other point z V’(x), e(z) e(x) + 1. A path from a point u of length

26 R. E. OSTEEN AND P. P. LIN

e(u) contains Cg(T); in particular, Cg(T) is contained in any diametral path. A
radial path joins a central point and a peripheral point. If d(u, v) e(u), then
v e a(T). Suppose that a(T) c sg c a(T) and let T’= T- sg, the subtree of
T obtained by removing from T each point of sg; then for each point x in T’,
e’(x) e(x) in particular, R(T’) R(T) and D(T’) D(T) 2. Sup-
pose 3 =<](T)]; there is a point x e (T) such that D(T x) D(T), N(T x)
(T)- x, and e’(z)= e(z) for each point z of T’= T- x. Suppose x e 5a(T),
xy g(T), and 2 < deg(y); then D(T- x)= D(T), and e’(z)= e(z) for each
point z of T’ T- x.

Furthermore, if D(T) is even, then R(T)= D(T)/2; if D(T) is odd, then
R(T) (1 + D(T))/2 (a proof may be found in Ore [43).

By means of the preceding, one may verify easily the following additional
properties. A path containing the center and joining a central and a peripheral
point is a radial path. A path containing the center and joining a pair of peri-
pheral points is a diametral path.

Finally, one has the following proposition (again, the proof is given in the
Appendix).

THEOREM 3. If X, y and z are distinct peripheral points of T and d(x, y) D(T),
then d(x, z) D(T) or d(y, z) D(T)

Now, let T be a nontrivial tree of diameter D(T) with periphery @(T). Define
the binary relation Q on (T) as follows’ if x, y (T), xQy if and only if d(x, y)
< D(T). Since d(x,x)= 0 < D(T), Q is reflexive. Since d(x,y)= d(y,x), Q is
symmetric. Because of the preceding theorem, (2 is transitive. Hence, Q is an
equivalence relation.

Suppose now that Cg(T) consists of two points, a and b. Since ab g(T) and
T has no cycles, for no point x is d(x, a) d(x, b). Define

a x x e (T), d(x a) < d(x b)
and

b {x’x e (T), d(x, b) < d(x, a)}
clearly, (T) is the disjoint union of a and . Suppose u, v e ,. Then d(u, a)

d(v, a) d(u, b) R(T) (D(T) 1)/2. Since d is in fact a metric,

d(u, v) =< ((D(T) 1)/2) + ((D(T) 1)/2) D(T) < D(T),

so that uQv. Similarly, if u, v , uQv. On the other hand, suppose u 6 and
v e. Then d(u, a) (D(T) 1)/2, d(v, b) (D(T) 1)/2, d(a, b) and since
u and v are joined by just one path, d(u, v) ((D(T) 1)/2) + ((D(T) 1)/2) +

D(T). Thus (u, v)q Q if u , and v e. Evidently, the equivalence classes
of the relation Q are the sets and .

Now suppose that the nontrivial tree T has a single central point, c. For
each x (c), the neighborhood of c, define

x {Y’Y e (T), d(y, x) < d(y, z) if x 4= z e A/(c)}.
That , is well-defined follows from the fact that if y c and x and z are distinct
points adjacent to c, then dO’, x) =/= d(y, z). Indeed, if y e Nx and x 4= z e g’(c),
then d(y,x)=d(y,z)-2. Let W=xo,x,...,x,_,x,,x,+,...,x2, be a

PICTURE SKELETONS 27

diametral path in T, where D(T) 2n. Then x, c, and x, + and x,_ are distinct
points of X(c). Evidently, Xo e Bx._l and x2, e Bx.+. Thus, there are at least
two points x, y in V’(c) such that B 4: 4: By. As in the case ICg(T)l 2, one
may prove that the collection {B,:x e (c), B, -: } partitions (T) into the
equivalence classes of the relation Q.

In view of the foregoing, it is convenient to define the hub OF(T) of a non-
trivial tree T, as follows:

((T)
(c)

if I(T)[2,

if (T) c}.
The collection of equivalence classes of Q is then given by 1-I {Bx’X OF(T),
B 4: }, where Bx is defined as above. If Ic(r)l 2, [HI 2. If (T) {c},
then 2 _< I-II <__ deg (c)= If(c)l.

Knowing oCg(T), (T), and the predecessor function, one may determine gl

with very little effort; in particular, the distance function is not needed.
From 1-I, OF(T) and the predecessor function, one may readily generate all

diametral paths" if and only if x e Bi, y e Bj, for some Bi, Bj e 1-I with B 4: j,
then x and y are joined by a diametral path. The particular diametral path is
easily generated via the predecessor function" beginning with z x, one replaces
z by pred(z) until z e OF(T); the same is done beginning with z y; these two
shortest paths from the peripheral points x and y to points in the hub, together
with the unique central point c if Icg(r)l 1, form the diametral path joining x
and y. Thus we obtain the following definitions. Let x(T) and y e OF(T),
with x e By e FI; the path from x to y is the spoke from x, and the path from y
to x is the spoke to x. If 1-I then the spoke set Z(N’) consists of the spokes from
x to y for each x e B. It is evident that all spokes are the same length, R(T) 1,
and y. Thus we obtain the following definitions. Let x e (T)and y e OF(T).

The hub OF(T) is immediate, given the center Cg(T). To find the center and
simultaneously determine the predecessor function, one may proceed as sug-
gested in the proof of Theorem 1. A tower of subtrees, So, $1,"’, S,, is con-
structed, with So T and S, K1 or S, K2, by removing the endpoints of S
to obtain S/ 1. The point or pair of points of S, constitute the center of T. For
central points of T, pred (x) 0; otherwise, if and only if x e 2.(S) and xy e g(Si)
for some i, y pred (x). Clearly, the number n of leaf-strippings is the sum of the
spoke length and 2 I(r)l. That is, R(T) n + Icg(r)l 1 and D(T) n + R(r).

The preceding definitions and propositions may now be integrated into an
algorithm for the generation of all the diametral paths of a given nontrivial tree
T. The algorithm may be summarized as follows, in six steps.

Step 1. Initialize the subtree S to be the tree T.
Step 2. Find cg(r), the predecessor function, R(T), and D(T).
Step 3. Find (T) and the eccentricity of each point of T.
Step 4. Find the hub OF(T).
Step 5. Find the spoke sets.
Step 6. Combine the spokes into the diametral paths.

The
3. Tree diametral paths algorithm. The algorithm is given below in detail.
nontrivial tree T of PT points, 1, 2, ..., PT, is assumed to be represented by

28 R. E. OSTEEN AND P. P. LIN

the neighborhoods NT(I), for I 1,2..., PT. DT(I) denotes the degree of
point I in T. The subtree S of T (Step 2) consists of PS points of T; NS(I) and
DS(I) denote the neighborhood and the degree of point I of S.

AIGORITI-IM 1 (Tree diametral paths algorithm).
Step 1. Initialize.

1.1. Set RP 0. (After Step 2, RP number of leaf strippings.)
1.2. Set PS PT.
1.3. For each I 1,2,..., PT:
1.3.1. Set PRED(1)= 0. (After Step 2, only central points have PRED 0.)
1.3.2. Set DS(I) DT(I).
1.3.3. Set NS(I) NT(I).
1.4. END OF STEP.

Step 2. Find the center, diameter and radius, and determine the predecessor
function.

Step

2.1. If PS <= 2, then go to Step 2.2.
2.1.1. Add to RP.
2.1.2. Initialize X to be the set of endpoints of S.
2.1.2.1. Set X .
2.1.2.2. For I 1,2,..., PT"
2.1.2.2.1. If DS(I)= 1, then set X X U {I}.
2.1.3. For each I in X"
2.1.3.1. Subtract from PS.
2.1.3.2. Set PRED (1) J, the single member of NS(I).
2.1.3.3. Set DS(1) O.
2.1.3.4. Subtract from DS(J).
2.1.3.5. Remove point I from NS(J).
2.1.4. Go to Step 2.1.
2.2. Set NC O.
2.3. Set C .
2.4. For I 1,2,..., PT:
2.4.1. If PRED (I) O"
2.4.1.1. Add to NC.
2.4.1.2. Set C C I,,J {I}.
2.5. Set RAD RP + NC- 1.
2.6. Set DIAM RAD + RP.
2.7. END OF STEP.
3. Find the periphery and the eccentricity.
3.1. Set ECX RAD (eccentricity of central points is R(T)).
3.2. Set DONE .
3.3. Set SUCC C (the successors are initially the central points).
3.4. Set X SUCC.
3.5. For each I in SUCC"
3.5.1. Set ECC(I) ECX.
3.5.2. Remove point I from SUCC.
3.6. Set DONE DONE (.J X.
3.7. Set PER X (finally, the periphery).
3.8. For each I in X"

PICTURE SKELETONS 29

Step

Step

Step

3.8.1. Set SUCC SUCC [.J NT(I).
3.9. Set SUCC SUCC DONE. (Points of eccentricity ECX + 1.)
3.10. If SUCC :/: , then go to Step 3.4.
3.11. END OF STEP.
4. Find the hub.
4.1. If NC 1, then go to Step 4.2.
4.1.1. Set HUB C.
4.1.2. Set NH 2 (hub size).
4.1.3. For I 1,2:
4.1.3.1. Set SP(1) . (Initially, each set of spokes is null.)
4.1.4. END OF STEP.
4.2. The center consists of one point.
4.2.1. Set HUB NT(I), where I is the single element of C.
4.2.2. Set NH DT(I), where I is the one central point.
4.2.3. For I 1,2, ..., NH:
4.2.3.1. Set SP(I) .
4.2.4. END OF STEP.
5. Find the spoke sets.
5.1. For each I in PER: (Trace via PRED the spoke.)
5.1.1. For each J 1,2,..., RAD:
5.1.1.1. Set the Jth point of the spoke to I.
5.1.1.2. Set ! PRED (I).
5.1.2. Set I to be the last point of the spoke.
5.1.3. For each J 1,2, ..., NH:
5.1.3.1. If I HUB(J), then set K J.
5.1.4. Include the spoke in SP(K).
5.2. END OF STEP.
6. Combine the spokes into diametral paths.
6.1. Set DP (The set of diametral paths).
6.2. Forl= ltoNH= 1:
6.2.1. For each spoke in SP(I):
6.2.1.1. For J J + to NH:
6.2.1.1.1. For each spoke fl in SP(J):
6.2.1.1.1.1. If NC 1, then set the (RAD + 1)st point of the point

sequence of the diametral path to the unique central point.
6.2.1.1.1.2. For K to RAD:
6.2.1.1.1.2.1. Set the Kth point of the diametral path point sequence to

the Kth point of spoke .
6.2.1.1.1.2.2. Set the (DIAM + 2- K)th point of the diametral path

point sequence to the Kth point of spoke ft.
6.2.1.1.2. Include the new diametral path in DP, the collection of all

diametral paths.
6.3. END OF ALGORITHM.

4. Semidiametral paths. For those applications which require it, one may
readily generalize the concepts of diametral paths, radial paths, and spokes in
trees.

30 R. E. OSTEEN AND P. P. LIN

An eccentric path from a point u is a path of length e(u)joining points u and
v, when d(u, v) e(u). An eccentric path from an endpoint u is termed a semi-
diametral path. A ray is a path joining an endpoint with the central point at the
greatest distance from the endpoint. Clearly, Cg(T) is contained in each ray. It is
apparent that semidiametral paths and rays generalize diametral paths and radial
paths, respectively. As previously remarked, an eccentric path from a point u
joins u with a peripheral point and contains (T). Analogously to diametral
paths, a path containing Cg(T) and joining an endpoint and a peripheral point is
a semidiametral path.

The equivalence relation Q on (T) may be easily extended to W(T) as
follows. Let u be an endpoint; then there exists a unique point x ’4(T) such that
d(u,x) <= d(u, y) for all y (T), because of the acyclicity of T. Define, for
x of(T), ’x {Y’Y (T), and d(y, x) < d(y, z) if x va z (T)} then, since

’x g: for any x (T), I-I’ {;,’x (T)} partitions (T). The extended
relation Q’ on 5(T) of Q on (T) is the equivalence relation induced by the
partitioning I-I’ of 2’(T). (Although the present application does not require it,
one could similarly extend Q’ to the set of all points except the central point, if
the tree has a unique central point.) A semispoke from an endpoint u is the path
joining u and x, where x (T) and u ;,, i.e., the shortest path from u to a
point of the hub. As before, a semispoke is generated without difficulty by means
of the predecessor function and the knowledge of the hub. For x oCg(T), the
semispoke set Y;’(N",,) consists of the semispokes from y to x for each y ’. A
semidiametral path is then formed from a spoke and a semispoke (possibly a
spoke), from different semispoke sets 2’(’x) and E’(’y).

5. Picture skeletons. An n-level digitized picture can formally be represented
by a matrix g whose elements take the values 0, 1, ..., n 1. That is, a photo-
graph is subjected to spatial sampling, and a quantization of the intensity. Figure 2
is an 8-level picture of a human chromosome--from Levi and Montanari [3].

As in Zahn [5], a weighted graph is formed from the picture array. The
points of the weighted graph are the elements of the picture of nonzero grey-
level or with a "neighbor" of nonzero grey-level. An element (r, s) of a picture
array is a neighbor of element (i, j) in case element (r, s) is one of the eight elements
nearest to element (i,j), i.e.,

0 < [(i- r)2 + (j S)2] 1/2 < 2.

Two points in the graph are joined by a line if the corresponding elements in
the picture array are neighbors and at least one element has a nonzero value. The
line weight of a pair of adjacent points in the graph is equal to the "grey-distance"
between the corresponding elements in the picture array. A grey-distance ap-
propriate to the example of Fig. 2 is the Euclidean distance divided by the average
intensity. That is, if (i, j) and (r, s) are neighbors not both of zero intensity, then

[(i- r)z + (j- S)2]1/2
a((i, j), (r, s))

1/2(g(i, j) + g(r, s))
A spanning forest of a graph is a forest having the same point set as the

graph, no line not in the graph and preserving the connectivity of components

PICTURE SKELETONS 31

000000000000000000000000000000000000000
000000000000000000000000012221100000000
000 O00000000000000000000136665 310000000
000000000000000000000001266666641000000
000000000000000000000013666666641000000
000000000000000000000136666666631000000
000000000000000000012466666666420000000
000000000000000001234666666663111100000
000000000000000013566666666432113321000
000000000000111236666666642211125663100
0000000000].2345566666664311111246666310
000000000124666666666431111112466666520
000000002466666666543211111245666666420
000000014666666653211111335666666666310
000000136666666421111134666666666663200
00C 001366666643111123466666666666 $31000
0000015666664211113566666666 55 543210000
000002666666211123666666653321111000000
000014666663111346666665311100 000000000
00001 $666641113666666642000000000000000
000125666421135666665320000000000000000
ODO 14666432236666642200000 O0 O0 000 000000
000356653335666643210000000000 000 000000
001466644666666421000000000000000000000
0035666666666652000000000000 00 000000000
002 $66666666642000000000000000000000000
002666666666320000000000000000000000000
002566666663100000000000000000000000000
003666666642000000000000000000000000000
013666666641000000000000000000000000000
0035666666620000000000000000 00 00000000 0
002 35 $666664200000000000000000 000 000000
002443466666410000000000000000000000000
0134543566666 31000000000000000000000000
013553235666664210000000000000000 000000
003464322466666531000000000000000000000
002566321246666665310000000000000000000
002 $66531136666666632100000000000 000000
00246666212366666666 321000000 000000000
001366665211256666666642000000 000000000
000366666421124666666663100000000000000
0002 $6666631112356666664200000000 000000
000136666652111125666664100000000000000
00002 $666665311111346642000000 000000000
00000266666664211111221100000000000000.0
00000].366666665210000000000000000000000
000000135666666651000000000000000000000
C00000002366666663100000000000 O00000000
000000000136666664100000000000000000000
000000000012466663100000000000000000000
000000000000123332000000000000000000000
000000000000000000000000000000 00000000 0

FIG. 2. An 8-1evel picture of a human chromosome

in the graph. A minimum spanning forest (MSF) of a graph with weighted lines
is a spanning forest of minimum weight, the weight of a forest being the sum of
the weights of its lines. A component of an MSF of a weighted graph is a minimum
spanning tree (MST) of a component of the graph. An efficient algorithm is given
in Gower and Ross [1] for the identification of an MST of a connected weighted
graph. This algorithm is easily extended to produce an MSF of the weighted
graph formed from a picture array. An MST of reasonable size in such an MSF
can be considered as a tree structure representation of an object in the picture.
For example, an MST representing the chromosome of Fig. 2 is given in Fig. 3.

An additional level of feature extraction condenses further the MST rep-
resentation of a picture object as in Fig. 3 to an MST "skeleton". A skeleton T’
of a tree T is a subtree of T whose points have the same eccentricities in T’ as they
do in T, i.e., a subtree of T which includes at least one diametral path of T; more-
over, each endpoint of T’ is an endpoint of T. A skeleton T’ of T may be specified
by a subset (T’) of the set (T) of all endpoints of T. That is, T’ is the subtree
of T generated by 5(T’) .W(T), by which is meant the minimal subtree of T

32 R. E. OSTEEN AND P. P. LIN

FIG. 3. An MST obtainedfrom Fig. 2

which includes all the points in (T’), viz., the subtree generated by the set of
all points of T lying on paths joining points of 5(T’). For example, if C(T’)
(T), then T’ T; if 5(T’) (T), then T’ consists of the union of all the

diametral paths of T.
It remains to consider the method of determining the subset (T’) of o(T)

for the specification of a skeleton of an MST of a picture object. First, the re-
quirement that 5(T’) c (T) is overly constraining, since not all the "legs" of
the picture will be of the same "length". That is, an MST with only two or three
peripheral points may have a few other endpoints of large eccentricity which
reflect indispensable features of the object. On the other hand, the condition
(T) c (T’) is also unjustified. For example, if two peripheral points are
adjacent to the same third point, not both are required to reflect the feature of
the one leg of which the two peripheral points are close boundary points. Thus,
the endpoints of a skeleton of a tree T need not include all the peripheral points
of T, and may include nonperipheral endpoints of T. Rather than imposing such
a relationship on 5a(T’) and (T), a more pertinent property of T’ is that it
have no "short branches".

PICTURE SKELETONS 33

A branch is a path joining nodes or endpoints and having no intermediate
nodes, a node being a point of degree greater than two. An interior branch joins
two nodes; an exterior branch has an endpoint as one extreme point (an exterior
branch joins two endpoints only in case the tree has just two endpoints). A short
branch is an exterior branch of length less than or equal to 0 IR(T)], where
0<<1.

The pruning algorithm below produces a skeleton T’ from a tree T by
iteratively deleting short branches. If the current subtree has an exterior branch
of length one, it is trimmed; this continues until there is no exterior branch of
length one. Then if there is an exterior branch of length two, it is trimmed; this
continues until there is no exterior branch of length less than or equal to two.
This process continues through the lengths k 1, 2, ..., 0, to produce a skeleton
having no exterior branch of length less than or equal to R(T). The pruning
algorithm was applied to the MST of Fig. 3 with 1/4; the resulting skeleton,
shown in Fig. 4, has only 4 endpoints and 2 nodes.

The pruning algorithm is similar to Step 5 of the tree diametral paths algo-
rithm (3) which finds the spoke sets of a tree: both proceed from endpoints
toward the center by means of the predecessor function. The pruning algorithm

FIG. 4. The skeleton of the picture shown in Fig. 2

34 R. E. OSTEEN AND P. P. LIN

starts a path from each endpoint of T and traces a path toward the center, either
until a node is encountered or until the path length is [aR(T)]. Those endpoints
of T which survive to fulfill the latter condition constitute the endpoints of the
skeleton T’ of T.

ALGORITI-IM 2 (Tree pruning algorithm). The algorithm terminates with the
skeleton T’ of the given tree T specified as follows. The M endpoints of T’ are
named in VO(I), for I 1,2,..., M](T’)I; (T’) together with T com-
pletely defines the skeleton T’. If vi is a point of T’, then the eccentricity of vi in
T’ is the same as its eccentricity in T; in particular, T’ has the same radius,
diameter and center as T. Moreover, the degree of v in T’ is given by DS(I); and
the predecessor of v in T’ is its predecessor in T.

Step 1. Initialize VO and VN to the sequence of all endpoints of T; DS DT
(ultimately, DS gives the degrees of the points of the skeleton); and
M ILe(T)l.

Step 2. For each k 1,2,..., /R(T)/:
2.1. SetN=M;M=0.
2.2. For each J 1,2, ..., N:
2.2.1. If 2 < DS(PRED(VN(J))) then execute 2.2.1.1; otherwise,

execute 2.2.1.2.
2.2.1.1. Decrement DS(PRED (VN(J))).
2.2.1.2. (Continue this path another step toward the center.)
2.2.1.2.1. Increment M.
2.2.1.2.2. Set VN(M)= PRED (VN(J)).
2.2.1.2.3. Set VO(M)= VO(J).

Step 3. END OF ALGORITHM.
The action of the pruning algorithm is illustrated in Fig. 5, using a tree of

radius 5 and 1/2.
The skeleton may be more conveniently represented by the specification of

its branches. For example, the branches of the skeleton of Fig. 5 join the pairs
of points (3, 9), (2, 10), (14, 10), (20, 9) and (9, 10). The identification of the branches
and their lengths is easily and efficiently achieved by means of the predecessor
function, the degree function and the set of skeleton endpoints.

The skeleton T’ may be further usefully condensed to a tree T" with weighted
lines as follows: the points of T" are adjacent in case they are the extreme points
of a branch of T’, i.e., lines of T" correspond to branches of T’. T" may be termed
the form of T’, for the following reasons: T’ and every tree homeomorphic to T’
may be obtained from T" by a sequence of subdivisions of lines of T", and T" is
the unique tree homeomorphic to T’ having no point of degree 2.

The weights of the lines of the form T" of the skeleton T’ of the MST T of a
picture object may be the lengths of the corresponding branches in T’, i.e., the
numbers of lines of the respective branches of T’. To eliminate the dependency of
the weights upon the fineness of the picture grid and upon the size of the object,
these line weights may be normalized with respect to the radius of T’.

For example, Fig. 4 gives a skeleton T’ of the MST T (Fig. 3) of a picture
(Fig. 2) of a human chromosome. R(T’) 51; the exterior branch lengths are
49, 46, 34 and 45; and the interior branch length is 6. The form T" of T’ is given
in Fig. 6 with the normalized branch lengths in T’ for the line weights.

PICTURE SKELETONS 35

17

15

18

13

16

19

21

22

(a) Tree T

VN VO
INITIAL 1, 2, 3, 8, 1, 2, 3, 8,

14, 15, 20, 14, 15, 20,
22 22

K 5,4,12, 2,3,14,
17, 21 20, 22

K 2 7,6,11, 2, 3, 14,
18 20

12

14

DT(I) PRED(I)
4

2 5
3 4
4 3 6
5 2 7
6 2 9
7 3 10
8 7
9 3 13
10 3 9
11 2 10
12 2 11
13 2 0
14 12
15 16
16 3 13
17 2 18
18 2 19
19 3 16
20 17
21 2 19
22 21

(b) Degrees and predecessors

(c) Formation ofL(T’) by the pruning algorithm

17

13

16

18
19

21

22

(d) The tree after the first pruning iteration

17

2O

4

13

16

18
19

II

(e) The tree after the second (final) pruning
iteration

12

14

FIG. 5. An illustration of the pruning algorithm

36 R. E. OSTEEN AND P. P. LIN

2

0.960 0.901

5
6

0.012

0.882 0.667

4 3

FIG. 6. The weightedform of the skeleton of Fig. 4

The chromosome example illustrates the tremendous degree of condensation
of representation--from the picture object array (Fig. 2), to the form (Fig. 6) of
the skeleton of the MST (Fig. 4). Furthermore, the skeleton--and so, the form--
is apparently not very sensitive to changes in the threshold , 0 < < 1: the
skeleton of Fig. 4 is the output of the pruning algorithm for all values of no
greater than 0.64 and no less than 0.22 (i.e., for any number of iterations of the
algorithm not less than 11 and not greater than 33).

The line weight suggested above--the graph theoretical distance between
the terminal points of a branch of the skeleton--could easily be supplemented by
the Euclidean distance between the terminal points of a branch. Indeed, the
points of the form could be labeled with their readily available picture array co-
ordinates, thereby permitting the subsequent calculation of Euclidean distances
and angular displacements among the lines, if the specific picture problem can
profitably utilize such data for the pattern classification task.

Although feature extraction is the main concern here, a few remarks con-
cerning pattern classification are in order. Suppose that classification is performed
by reference to the forms, S’, S, ..., S, of typical patterns from the respective
pattern classes. To classify a pattern, an MST T is first found. Then rather than
use a threshold to produce a single skeleton T’ from the pruning algorithm, a
sequence of skeletons T’, Tz, ..., is formed by iterating the pruning algorithm
R(T)- 1 times or until the resulting skeleton has fewer endpoints than any of
the typical forms S’/.

Beginning with the last member of the sequence T having more endpoints
than any of the typical forms and proceeding to the end of the sequence, a form

T is formed for each distinct element of the sequence of skeletons. After deleting
repetitions from the sequence of forms, one has a tower of forms T’, T, ..., T,"
for each k 1, 2, ..., k 1, Tj,’/ is a subtree of T,’ having strictly fewer points
than does T,’.

Finally, classification proceeds as follows. For each class i, one finds the last
member of the tower T,’ having more endpoints than does S’/and the first having
fewer; the resulting subsequence of the tower has two or three members. Each
of them is matched against SI’; the score of the closest match is then taken to be
the score s(T, S’) of the MST T with respect to the ith pattern class. This method
eliminates the necessity to choose a threshold, and considers for each class the
most appropriate form of T for the match.

PICTURE SKELETONS 37

6. Conclusions. Certain very useful special properties of eccentricities of
points in trees have been identified. As a consequence of these properties, a com-
pact and productive representation of trees--the predecessor function--has been
provided; and an efficient algorithm has been presented for the determination
of the center, radius, diameter, and periphery of a tree, as well as its predecessor
function and the set of all its diametral paths.

The theory has been applied to a feature extraction problem in picture
processing. A tree pruning algorithm iteratively trims short branches joining end-
points and nodes from a minimum spanning tree of a picture object, producing
a "skeleton" of the picture object. This MST skeleton differs from the skeleton
produced by the method of Levi and Montanari [3] in several respects. The Levi--
Montanari skeleton includes object width information, from which the picture
can be approximately reconstructed. On the other hand the MST skeleton for a
connected picture object is itself connected and is everywhere one spot wide.
Indeed, the fact that the MST skeleton is a tree permits even further contraction
of the object representation preparatory to pattern classification.

Specifically, a method was described to condense an MST skeleton for
matching purposes into a small weighted tree--the "form" of the skeleton,
representing the topographical essence of the picture object. An example--a
picture of a human chromosomewas provided to illustrate the method of
abstracting a skeleton from an MST, and the form from the skeleton. The degree
of condensation of object representation was seen to be very large--from the
many hundreds of points of the MST, to the couple of hundred points of the
skeleton, to the six points of the form of the skeleton. Still the form was seen to
preserve the essentials of the shape of the object. Indeed, the (weighted) form of
the skeleton of the MST of the picture object resembles a "stick drawing" of the
object--an eminently appropriate form of feature extraction output for certain
picture processing problems.

Applicability of the scheme requires that the object pictures .be amenable to
an MST representation for purposes of pattern classification. That is, the grey-
level representation of objects must permit the application of a suitably chosen
grey-distance function to produce weighted graphs whose minimum spanning
trees adequately reflect the key features of the objects.

In the chromosome example of Fig. 2, the general character of the picture is
that the grey-level increases from the boundary toward the interior. Defining the
grey-distance to vary inversely with the average grey-level of a pair of neighboring
points assures the existence of a long path in any MST from the central region
along each of the four "arms" of the chromosome (see Figs. 3 and 4). (On the
other hand, this particular grey-distance is altogether unsuitable for use with
objects having high grey-levels near the boundary and low levels in the interior.)

The fairly large region in the interior of the chromosome having uniform high
grey-level illustrates a limitation on the general strategy of deriving skeletons
from minimum spanning trees in grey-distance weighted graphs for picture
objects:the nonuniqueness of the MST. (Indeed, the number of distinct MST’s
for the chromosome example is indisputably unmanageably large.)

The processing order of picture points in our programmed implementation
of the MST algorithm produces an MST with the long paths through the regions

38 R. E. OSTEEN AND P. P. LIN

of maximum grey-level hugging the upper boundaries of those regions, leading to
a skeleton which is maximally upward displaced relative to the picture. Reversing
the scanning order (or rotating the picture through 180) would lead to a skeleton
which is maximally downward displaced relative to the picture. Similarly, scan-
ning columnwise from left to right or from right to left would produce skeletons
maximally left or right displaced.

The unfortunate significance of this is that the skeleton is not fixed relative
to the picture, independently of the angular orientation of the picture in the
plane. It is not clear whether or not it would be feasible--and if so, whether or
not it would be profitable--to modify the MST skeleton process so as to obtain
a skeleton well centered within the object. One way in which this might be done
is (i) to generate the four MST’s maximally displaced to the left, right, top and
bottom by varying the scanning order of the MST algorithm; (ii) to produce a
skeleton from each of the four trees; and (iii) to combine the four skeletons into
a single well centered skeleton.

However, in spite of the dependence of the skeleton on orientation due to the
multiplicity of MST’s, the choice of any MST whatsoever for the chromosome
picture results in the production by the pruning algorithm--for a wide range of
"short branch" thresholds--of a skeleton whose further reduction to a "form" is
either (i) an "H" as in Fig. 6, with four legs of comparable length and a relatively
short "bar"; or (ii) an "X" with four legs of comparable length.

Appendix. Proofs of theorems.
THEOREM 1. Let T be a tree of diameter D(T), radius R(T) and center (T).

Then
(i) if D(T) is even, then C(T) is a singleton; if D(T) is odd, then C(T) con-

sists of a pair of adjacent points;
(ii) e(x) R(T) + min {d(x, c)’c (T)}, for any point x of T; and

(iii) if Xo,Xl, xo(r) is a diametral path in T, then for each 0, 1,...,
D(T), e(xi) max {i,D(T) i}.

Proof. The proof is by induction on the diameter.
First, the only trees of diameter less than 2 are K1 and K2, the complete

graphs on and on 2 points. Obviously, all three statements hold for these two
trees.

As induction hypothesis, assume that the statements hold for all trees of
diameter less than 2k, where k is some particular natural number. Let T be a tree
of diameter 2k or 2k + 1, and T’ be the subtree of T obtained by removing from
T all its endpoints. Since D(T’) D(T) 2, D(T’) is less than 2k. Consequently,
by the induction hypothesis, the statements hold for T’.

Since D(T’)= D(T)- 2, D(T) is even if and only if D(T’) is even. (T’)
(T), because e’(x)= e(x)- for each point x of T’. By the induction hy-

pothesis, (T)= C(T’) is a singleton if D(T’) is even, and therefore if D(T) is
even; and (T) C(T’) is a pair of adjacent points if D(T’) is odd, and therefore
if D(T) is odd. Thus, the first statement holds for trees of diameter less than
2(k + 1); this completes the proof of the first assertion.

By the induction hypothesis, e’(x)= R(T’)+ min {d(x,c)’cC(T’)}, where
x is any point of T’, i.e., any nonendpoint of T. But since e’(x) e(x) 1, R(T’)

PICTURE SKELETONS 39

R(T) and (T’) (T), this becomes e(x) R(T) + min {d(x, c)’ce(T)}.
Suppose now that x e (T), and let y be the point adjacent to x. Since y is a
point of r’, e(y)= R(T) + min {d(y, c)’c e (r)}, as above. Since x (r) and
y is the only point adjacent to x, it is clear that min {d(x,c)’ce(r)}
+ min {d(y, c)’c e (T)}. But since e(x) e(y) + 1, this implies that e(x) R(T)
+ min {d(x, c)’c e (r)}. Therefore for any point x of T,

e(x) R(T) + min {d(x, c) c qY(T)

This completes the induction step of the proof of the second assertion of the
theorem.

Let W- Xo, x l, .’., x, be a diametral path in T, with n D(T). Since Xo
and x, are peripheral points, they are endpoints therefore e(xl) e(x,_ 1) n 1.
Let W’ xl,x2,’", X,_l. Then W’ is a path in T’ of length n 2 and D(T’)

D(T) 2, W’ is a diametral path in T’, and x and x,_ are peripheral points
of T’. By the induction hypothesis, e’(xi)= max {(i- 1), (n- 2)- (i- 1)I

max {i 1, n 1} for each 1,2,.-., n 1. Since e(x) e’(x) + for
points x of T’, e(xi)= + e’(x)= max {i,n- i} for i= 1,2,..., n- 1. Since
also e(xo) e(x,) max {i,n i}, it follows that e(x) max {i,n i} for each
xi on W. This completes the inductive step of the proof of the third statement of
the theorem.

TI-OREN 2. If U Y/(T) Cg(T), then there is exactly one point v such that
uv rf(T) and e(v) e(u) 1.

Proof. Let b cOg(T) be such that e(u)= R(T)+ d(u, b), and let W u, v,
x2, "’, x,_ 1, b be the unique path from u to b; since u cg(7), u :;a b, so that the
unique path from v to b is v, x2,..., x,_l, b and d(v,b)= d(u,b)- 1. Con-
sequently, e(v) e(u) with uv g(T).

Suppose v’ is a point such that uv’e g(T) and e(u) e(v’) + 1. Let b’ Cg(T)
be such that e(v’) R(T) + d(v’, b’), and W’ v,yl,y2; Ym-1, b’ the path
from v’ to b’. Since e(v’) e(u) 1, m n 1. Point u does not occur on W’,
for otherwise, e(u) < e(v’), contrary to the assumption that e(v’) e(u) 1. Since
also uv’ g(T), the path from u to b’ is u, v’, Y l, "’", Y,- 1, b’, the length of which
is m + n. Thus, d(u, b) d(u, b’), with b, b’ Cg(T). If b :/: b’, then bb’6 g(T),
so that]d(u, b) d(u, b’)l 1; so since d(u, b) d(u, b’), b b’. Therefore, if
v va v’, then W and W’ are two distinct paths joining u and b, an impossibility.
Hence, v v’, i.e., the point adjacent to u, of eccentricity one less, is unique.

THEOREM 3. If X, y and z are distinct peripheral points of T and d(x, y) D(T),
then d(x, z) D(T) or d(y, z) D(T).

Proof. Let W=xo,xl,x2,...,x,_l,x, be the path from x to y, where
n D(T), Xo x, and x, y. Since z is neither x nor y, z is not an endpoint of
W; since z (T) c 5a(T), z is not an intermediate point of W. Thus, z does not
occur on W. =< min {d(z, xi)’i 0, 1,..., n}. Let x be a point of W such that
d(z, xi) <= d(z, x) for all x on W, and W’ Yo, Y l, "’", Y be the path from z to

xi, where Yo z, y xi, and k d(z, xi). If r 0, 1,..., k 1, y does not lie
on W, since otherwise d(z, y) < d(z, x) with y, on W, contrary to the hypothesis
on xi. Therefore, W1 Yo, Y1,"’, Y,Xi-l,xi-2,’", x l,xo is the path from z
to x and W2 Yo, Y l, Y,x+ 1, x+2, "’", x, is the path from z to y.

40 R. E. OSTEEN AND P. P. LIN

Since W is a diametral path, W contains (T). If Cg(T) consists of two points,
they are adjacent, and so occur consecutively on W. Consequently, one of W
and W2 contains (T), and since it joins peripheral points, is therefore a diametral
path.

Aeknowlelgments. The authors are grateful to Drs. C.. K. Chen and Harry
Blum for their careful consideration of the first draft of this paper, and for their
helpful comments and suggestions.

We are also indebted to Dr. R. H. Cofer, who suggested a tree representation
of picture objects and defined the problem with which this paper has been
concerned.

REFERENCES

1] J. C. GOWR aND G. J. S. Ross, Minimum spanning trees and single linkage cluster analysis, Applied
Statistics, 18 (1969), pp. 54--64.

[2] F. HaRRY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[3] G. LEvi AND U. MONTANARI, A grey-weighted skeleton, Information and Control, 17 (1970),

pp. 62- 91.
[4] O. OR, Theory of Graphs, American Mathematical Society, Providence, Rhode Island, 1962.
[5] C. T. ZHN, Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans.

Computers, C-20 (1971), pp. 68-86.

SIAM J. CorK,

Vol. 3, No. 1, March 1974

ON BACKTRACKING" A COMBINATORIAL DESCRIPTION
OF THE ALGORITHM*

JAY P. FILLMORE AND S. G. WILLIAMSONf

Abstract. A basic algorithm for solving many discrete problems is the so-called "backtracking"
algorithm. The basic problem is that of generating the elements of a subset So of a finite set in an
efficient manner. If a group G acts on So, then one might wish to obtain only nonisomorphic elements
of So. In this paper the basic backtracking algorithm is described in terms of chains of partitions on the
set S. The corresponding isomorph rejection problem is described in terms of G-invariant chains of
partitions on S. Examples and flow charts are given.

Key words, backtracking, isomorph rejection, constructive combinatorics, parallel search, eight
queens problem.

1. Introduction. Backtracking, as it is usually formulated [3], is a search
algorithm to determine all elements (x 1,-", x,) of a Cartesian product X

X, which satisfy a given true-false valued "criterion" function" o(xl,..., xn)
true. An element satisfying this condition is built up coordinate by coordinate"

x in X is chosen first, then x2 in X2, and so on. If, after the choice of the first
k coordinates, qg(xl, ..., xk, -, ..., -) is never true, no matter what the choice
of the remaining n k coordinates, the kth coordinate xk is changed; this step is
the "backtrack" which gives the algorithm its name. The efficiency of the algorithm
is due to the fact that at the point where the above backtrack occurs, M+I
M, possibilities are ruled out, Mi being the number of elements in the set Xi.

This formulation is tied to the fact that the set,being searched is a Cartesian
product and the algorithm rapidly finds large numbers of nonsolutions.

The fact that the solutions of qg(x ..., x,) true are a subset of a Cartesian
product does not mean that this backtracking procedure will yield an efficient
algorithm; indeed, the fixed structure of the Cartesian product may introduce
unnecessary complications. Moreover, the ability to accept large numbers of
solutions, as well as reject large numbers of nonsolutions, is not incorporated.
Finally, the Cartesian product description makes awkward the detection of iso-
morphs, that is, solutions carried into one another under the action of a group.

A simpler, more versatile, procedure is described in this paper. Briefly" given
a set S and a T-O-F valued criterion function q9 on S, we partition S into three sets,
the sets where q9 takes the values T, 0 and F; these sets are built from families of
subsets of S which are prescribed in advance. A brief discussion of the problem of
isomorph rejection is given in a similar framework. The concluding section of this
paper describes the notion of "parallel search", a method which can significantly
reduce the number of steps needed to carry out a backtrack search by performing
more than one related search simultaneously.

2. Backtracking. Let S be a finite set. The backtrack algorithm will be
described in terms of partitions n of S into disjoint blocks B. The partition n’ refines

Received by the editors November 16, 1972. Research of the second author was sponsored by the
Air Force Office of Scientific Research, Air Force Systems Command, USAF, under AFOSR Contract/
Grant no. 71-2089.

]" Department of Mathematics, University of California at San Diego, La Jolla, California 92037.

41

42 JAY P. FILLMORE AND. S. G. WILLIAMSON

n, written n > n’, if for any block B’ in n’ there is a block B in n with B containing
B’. In a chain of partitions of S each one refines the previous: n > n2 > > nr.

Let q be a T-O-F valued "criterion" function on S. We wish to partition S
into the three sets where o is T, 0 and F. We denote by q a T-O-F valued "test"
function defined on n, i.e., the arguments of p are the blocks of n, related to 0 as
follows:

for B in n.

if q(B) 0,
F,

0(s) T for all s in B,
then no conclusion,

q(s) F for all s in B,

A backtrack search on the set S is defined by the following data" a chain of
partitions n > 72 > > 7 of S and a numbering (linear ordering) B(il,..., ik)
of the blocks of nk such that B(il, i_1) contains B(ii, i) for <= i <= M(il,
"", ik-1), the number of blocks of n contained in B(i ..., k_ 1). The backtrack
search is carried out according to the flow chart in Fig. 1.

Note that the numbering tells us that B(il,..., ik) is a subblock of B(il) in
ha, B(ia, i2) in n2, B(i,’", k_ 1) in/1;k_ 1"

At the conclusion of the algorithm, the set S has been partitioned into three
subsets St, So, and SF. Sr and SF are the disjoint union of blocks of various
n; q(s) T for every s in St, q(s) F for every s in Sv; if a block appears in Sr
or SF, no subblock needed to be tested. So is the disjoint union of blocks of n.

If n is the discrete partition of S, and qr is defined by qr({s}) q(s), then
this disjoint union of three sets is the one originally sought.

Let us note the following important observation" backtrack searching is
recursive; it may be applied again to the set So after choosing a chain of partitions
and test functions for this set. This allows us to define the above backtrack process
recursively" choose a partition n of S and a test function q related to the criterion
function q as before. On the basis of p, classify the blocks of n as subsets of St,
So, or SF. Repeat this procedure for each block B of n which is contained in So,

using the partition n’]B, where n’ denotes the next partition in the chain ofpartitions,
and its restriction n’lB consists of all blocks of n’ contained in B. The use of a
partition of So other than the partition n’lB yields a more general backtrack algo-
rithm in which choices of partitions can be made to depend on information
obtained during the search.

Example. The usual search of a Cartesian product [3] is formulated in the
present theory as follows" let S be X X2 X, and let o be the true-false
valued criterion function on S. We wish to determine those elements (x a, ..., x,)
of S for which q(x...., x,) true. For 1 _< k =< n, define partitions"

nk= {B(il,’",ik)[l <i < M 1 <i < M1 k-- k

B(il,’’’,ik)--{ai} {ai} XR/ X,

where ai is the ith element of the set X. Define test functions" for __< k < n,

F if q(s) false for all s in B,
B intp(B)

0 otherwise;
7k"

ON BACKTRACKING 43

kk+l

for k n,

TOP /

FIG. 1. Flow chart of the backtrack algorithm

F if q(s) false,
B={s} inn,,o.(B)

T if qg(s) true.

This construction may be generalized slightly by defining A for a subset
A of {1,..., n} to be the partition consisting of blocks X’ x x X’,, where
X, X if k is not in A and X, is a single element subset of Xk if k is in A. The
test functions are defined as before. A chain of partitions results by taking a chain
of subsets of {1,..., n}.

Every backtrack search on a set S’ can be formulated as a backtrack search
on a Cartesian product which is not necessarily the set S. Indeed, given rc > 2
> > tr, a chain of partitions of the set S, take X to be the set of blocks of r.

44 JAY P. FILLMORE AND S. G. WILLIAMSON

The test functions must be suitably defined. It will be found that the Cartesian
product formulation, in general, unnecessarily expands the amount of searching
required to arrive at the "solutions".

Example. Letf(x) be a continuously differentiable function on 0 <= x _<_ 1. Let
S be a finite subset of this interval. We wish to classify the points s of S as to whether
f(s) > 0 or f(s) <= O. That is, the criterion function on S will be

{ iff(s)>0,
g0(s)

iff(s) 0.

Suppose that f(x) satisfies If’(x)l <= m on 0 __< x =< 1. Choose partitions z > z2

> > z of S with the restriction that the blocks of z are intervals of S, that is,
intervals of 0 < x intersected with S. Let ak be the maximum length of an
interval in ,. Define test functions gok by

T iff(b) > ma,
gok(B) F iff(b) =< -Ma,

o otherwise,

where, for each B in z, a fixed b in B is chosen. At the completion of the search,
S will be the disjoint union of three sets" the first is the disjoint union of blocks of
varying sizes on whichf(s) > 0, the second is the disjoint union of blocks of varying
sizes on which f(s) <= O, and the third is the disjoint union of blocks of length
< Mar where no conclusion is made. This latter set, usually relatively small, may
be searched point by point. Clearly, this generalizes to several variables. Note that,
in this example, S does not have a Cartesian product structure which can be
utilized in the search.

3. Isomorph rejection. Let G be a finite group which acts on the set S. Two
elements s and s’ of S are called isomorphs if s’ gs for some g in G. One wants to
partition S according to the values T, 0 or F taken on by the criterion function go;
a reasonable assumption is that go(s’) go(s) when s and s’ are isomorphs.

Specifically, one wants to find one representative from each equivalence class
of isomorphs and classify it according to the value of go. Moreover, one wants to
do this efficiently, so that no comparisons need to be made during or after the
search. Frequently, the search can be structured in such a way that the group
action is methodically taken into account.

The building block of the algorithm is the following, which we shall call an
elementary search on the set S in the presence ofthe group G. This consists merely of
listing the orbits of G as it acts on the set S and selecting one element from each
orbit.

The algorithm now proceeds as follows" beginning with the set S and the
group G which acts on it, construct a partition z of S which is stable under G, that
is, if B is a block of , so also is gB, the set of all gs with s in B. The group G acts
on the set . Perform an elementary search on the set z in the presence of the group
G. For each block B which results from this search, compute the subgroup GB of G
consisting of all g in G for which gB B. GB acts on the set B, and for each of these
blocks, B, one repeats the process, with S replaced by B and G replaced by Gn.

ON BACKTRACKING 45

The rejection of isomorphs terminates when either Gu consists of the identity
only, in which case the block B may be searched directly without the possibility
of isomorphs, or B consists of a single element, in which case Gn is the symmetry
group of this element.

Before describing a general method for solving the isomorph rejection
problem, we illustrate with an example.

Example. The problem ofeight queens. The original problem, due to M. Bezzel
[2], is to place eight nonattacking queens on an eight by eight chess board. There
are known to be ninety-two solutions, but many of these are isomorphs under the
obvious action of the eight-element dihedral group;it is known that there are
twelve nonisomorph solutions. We will illustrate a backtracking algorithm to solve
the problem of placing five or fewer nonattacking queens on a five by five chess
board; this will permit us to list every step. The case of an eight by eight chess
board is no more difficult, only longer.

We begin by numbering the squares of the five by five chess board in any
way we please; we number them from 1 to 25 in the order that characters are printed
on a page.

Take the empty square bearing the smallest number, in this case 1, and com-
pute its orbit under the full symmetry group of the square--in this case, squares
1, 5, 21 and 25. The largest number of queens which may be placed in these four
squares is one; the other possibility is zero. We begin by placing one queen on
square 1. By the use of the symmetry group, we need not consider placing one
queen on square 5, square 21, or square 25 this amounts to picking a representative
of an orbit for the symmetry group acting on the configuration of queens on these
four squares. Later, when we have backtracked to these four squares, we will pick
another representative of an orbit under this action. We will keep track of these
choices by always placing the "largest" first. That is, if the presence or absence of
a queen on a square is interpreted as a binary digit, square is the most significant
bit, square 25 the least significant bit. A record must be kept of the orbits as they
are used.

From the recursive viewpoint, the problem is now the following: place four
or fewer nonattacking queens on the 21 squares which are exclusive of squares 1,
5, 21 and 25 so that they are not attacked by the queen in square 1. Note there is
to be a queen in square 1, and no queen in squares 5, 21 and 25. The symmetry
group of this problem is the group of order two consisting of the identity and
reflection in the diagonal through squares 1 and 25. The orbit in the chess board
containing the least numbered unspecified square consists of squares 2 and 6. The
"largest" placement of queens on this orbit is to place no queen on either square 2
or square 6.

The algorithm now continues in this recursive fashion. As soon as the identity
group is reached, isomorphs are rejected, and the search may proceed in any
manner. But in fact, the above prescription will reduce to the usual backtrack
scheme of placing a queen on the "first" possible square it can occupy.

When orbits of various groups acting on the chess board fill up all 25 squares,
a solution has been reached. When one backtracks to a certain orbit on the chess
board, one advances the configuration of queens to occupy that orbit to be the
next "smaller" orbit representative for the symmetry group of that orbit acting

46 JAY P. FILLMORE AND S. G. WILLIAMSON

on the configuration of queens in that orbit.
An initial and a terminal segment of this algorithm is executed step by step in

Figs. 2 and 3. Orbits are numbered as they are set down; queens are denoted by
circles. For the sake of brevity, only those steps in the execution of the algorithm
that change the configuration of queens, are a backtrack, or are terminal are
recorded. The terminal steps, indicated by the whole board being filled by labeled
orbits, are solutions.

3 6 3 6 910 (
4 4

(2 3 4 02341 (2 3 4

2 5 (7 8 2 5 (7 8 2 5 (7 8

3 6 910 (3 6 910 (2 6 9100)
41 41 131415 4 Q’ 131415

16 17 16 17 18
1st solution 2nd solution

@2341 @2341 @2341
2 5@78 2 5@78 2 5 (7 8

3 6 910 3 6 910 3 6 910

412 412131415 412131415

3rd solution

FIG. 2. An initial segment of the algorithm

1@321 2 (21 2@21
2 4 5 6 2 2 2 2 4 5 4 2

7 8 9 10 11 3 3 3 @ 6 3

2 12 13 14 2 2 2 2 2

2 15 2 2 3 2 2 3 2
55th solution

2@21 2@21 3@21
2 4 5 4 2 2 4 5 4 2 2 4 5 4 2

3 7 63 3 7 63 36 6 3

2 3 2 2 3 2 2 3 2
56th solution 57th solution

ON BACKTRACKING 47

2 2

2 4 5 4

2 6 7 6

2 @ 8

2 3 2

2 2

2 4 5 4 2

2 6 7 6 3

2 8 9 8 2

2 3 2
59th solution

2@2
2 4 5 4

3 6 7 6

@ 9 82

2 3 2
58th solution

2 3 2

2

3

2

2 3 2

2 Q 2

2 4 5 4

3 6 7 6

2 8 8

2 3 2

2 3 2

2 4 2

3 3

2 4 4 2

2 3 2

2 3 2

2 (5 4 2

3 5 6 Q 3

2 4 7 4 2

2 3 2
60th solution

2 3 2

2 4 (4 2

3 5 5 3

2 4 5 4 2

2 3 2

2 3 2

2 4 5 4 2

3 5 (5 3

2 4 5 4 2

2 3 2
63rd solution

2 3 2

2 5 4

3 5 6 7

2 4 7 4

2 3 2

2 2

3 3

2 2

61st solution

2 3 2

2 4 4 2

3 5 6 5 3

2 4 5 4 2

2 3 2
62nd solution

2 3 2

2 4 5 4 2

3 5 6 5 3

2 4 5 4 2

2 3 2
64th solution

FIG. 3. Terminal segment of the algorithm

2 3 2

4 4 2

3

4 4 2

2 3 2

2 3 2

2 4 5 4 2

3 5 5 3

2 4 5 4 2

2 3 2

To connect this example with the general description, we take S to be the set
of all ways to place five or fewer nonattacking queens on the five by five chess
board. Partitions rc of S which are stable under G, or the subgroup of G at a par-
ticular stage of the algorithm, are obtained by specifying configurations on an
orbit of the group as it acts on the board.

Before leaving this example, we wish to indicate one possible machine imple-
mentation, which is much like the one used in the example of the next section.

A certain amount of preliminary analysis is done to create the following lists:
first, the subgroups of the group of all symmetries of the square are numbered in

48 JAY P. FILLMORE AND. S. G. WILLIAMSON

any order from to 10 (not all will actually be needed). For each group, all possible
orbits on the five by five chess board are described. Any configuration on the chess
board can be represented by a 25 bit word; we will number the bits from 1 to 25 so
as to correspond to the numbering of the squares used above on the board. Given
a subgroup, its orbits on the board are listed and numbered by the first occupied
square, that is, by the first nonzero bit of the corresponding word. Thus, we have
a doubly indexed list, the first index for the group number, the second index for the
orbit number, and the elements of the list are orbits on the chess board. The values
of the second index which are used depend on the first index. Second: for each of
the orbits listed above, one lists the possible configurations of queens which may
occupy the orbit, choosing one representative configuration under the action of the
subgroup in question as it acts on the configurations in the orbit. These representa-
tive configurations are labeled consecutively. We now make up three triply
indexed lists, the indices being the group number, the orbit number, as above, and
the configuration number. The first list consists of the configuration of queens in
the orbit: it is a 25 bit word. The second list consists of the squares on the chess
board which are attacked by the queens of the configuration in the corresponding
entry of the first list. The third list gives, for each subgroup, orbit and configuration
of queens in the orbit, the number of the subgroup of the given subgroup which
is the stability group of the given configuration of queens.

The following ALGOL code requires several machine-oriented procedures
which we describe first. They are similar to those available on the Burroughs
B6700 machine.

We regard Boolean variables as 25 bit words; the Boolean operations treat
the Boolean words bitwise. There is an integer procedure FIRSTONE which
gives the number of the first nonzero bit of a Boolean word. There is a Boolean
procedure FILLED which tells if data has been filled into a Boolean word. There
is a Boolean procedure EMPTY which is true if all bits of Boolean word are zero.
Let FF denote the Boolean word consisting of all bits zero; let TT denote the
Boolean word with all bits one. The Boolean relation IS compares two words and
is true if they are bitwise identical.

The section of the program denoted READ DATA reads the prepared lists
into the declared arrays. Note that for this problem there will be at most six
configurations of queens in any one orbit, an additional value for the index must
be provided for, so that one can detect when the list of configurations is exhausted.
Note also, that array elements corresponding to no data must be filled with symbols
which will cause FILLED to produce false.

begin
Boolean array ORBI 10, 1:25], QNS, ATKI 10, 1:25, 1:7];
integer array SGNI 10, 1: 25, 1: 7, G, O, QI: 26];
Boolean B, X; B is the union of orbits on the board;

X is the configuration of queens.
integer K; K is the same as the integer numbering the orbits

in the hand execution above.
label AK, BK, AQ, FINIS;

ON BACKTRACKING 49

READ DATA
B: FF;
X: FF;
K: 0; The number of the full symmetry group of the
GIll: 10; square is 10.

AK:K: K + 1;
O[K]: FIRSTONE(NOT B);
B:= B OR ORB[G[K], O[K]];
Q[K]: 0;

AQ Q[K] Q[K] + 1;
ifNOT FILLED(QNS[G[K], O[K], Q[K]]) then goto BK;
if NOT EMPTY(X AND ATK[G[K], Q[K]]) then goto AQ;
X:-- X OR QNS[G[K], O[K], Q[K]];
G[K + 13:= SGN[G[K], O[K], Q[K]];
ifNOT (B IS TT) then goto AK
print (X);
X: X.AND(NOT ORB[G[K], O[K]]);
goto AQ

BK:X: X AND(NOT ORB[G[K], O[K]]);
B: B AND (NOT ORB [G[K], O[K]]);
K:=K-1;
ifK EQL 0 then goto FINIS;
goto AQ;

FINIS: ,end.

A general setting for backtracking, which incorporates the above recursive
procedure in a "dynamic" setting would contain the following ingredients.

Let S be the set which we wish to search. For certain subsets A of S, we have
given a rule which assigns a partition rta of A; certain of these subsets are desig-
nated by this rule as terminal. Each partition rta is assumed to linearly ordered;
we assume given a rule which to each element B of rta associates a larger element
B’ in the given linear ordering of rca For convenience, we let 0 and , respectively,
denote unique elements less than and greater than every element of rca. If rc is any
partition, [.Jrc denotes the union of its blocks; re- denotes the partition from which
1.3rt was chosen in the execution of the algorithm. p is a T, 0, F-valued test func-
tion on the blocks of re, related to q9 as previously.

The algorithm is now defined by the flow chart in Fig. 4. Note that a record
must be kept during the execution of the algorithm in order to determine

At the conclusion of the algorithm, three collections of blocks will have been
determined: a collection of blocks which test T, a collection of blocks which test F,
and a collection of blocks from terminal partitions which test 0. Moreover, only
blocks which are permitted to appear by the succession rule B to B’ are obtained.
This last feature may be used to incorporate what is usually known as "preclusion",
and plays a central role in isomorph rejection.

4. Paralld search. Let p be a criterion function on the set S. A backtrack
search will be said to be a parallel search if there are given two test functions
and qg which are related to the criterion function as in Table 1. The headings of

50 JAY P. FILLMORE AND. S. G. WILLIAMSON

BS

B.--O

B-Urc

F

YES
No

FIG. 4. Flow chart of the backtrack algorithm; dynamic viewpoint

the table are the values of qg’(B) and tp(B); the entries of the table are the values
of q(s) for every s in B, B is a block of re. Essentially, this says that as the backtrack
is being executed, a decision is to be made on the basis of qg’ or of qg when possible,
and conflicting decisions need not be made.

STOP

TABLE

cannot occur

cannot occur

ON BACKTRACKING 51

The effect of having two tests will be to come to decisions that permit back-
tracking more often than would occur with either test alone. This will speed up
the execution of the algorithm.

If the algorithm is executed on a multiple processor machine, the two tests
can be genuinely performed in parallel. Parallel search, of course, extends to
several tests.

Example. The SOMA cube. For a detailed description of this "puzzle", see
1] or the booklet published by Parker Brothers, Inc., Salem, Mass., 1969, which
accompanies the puzzle.

We will describe the three by three by three SOMA cube as follows: number
the cells in the cube from 1 to 27:

3 6 9 12 15 18back center
plane: 2 5 8; plane: 11 14 17;

1 4 7 10 13 16

21 24 27front
plane: 20 23 26.

19 22 25

A 1 or 0 is recorded in a 27 bit word, reading left to right, according to whether
a cell is occupied or not. For example, 600400400 in octal represents the L-shaped
piece placed in the leftmost plane, long side down, short side to the rear. The
seven pieces, together with an identifying letter, are the following:

A: 600400400 D: 600300000
B: 640400000 E: 620020000
C: 400600400 F: 600220000

G: 640000000

In the Parker Brothers booklet, these are, respectively, pieces 2, 7, 3, 4, 5, 6 and 1.
Numerous procedures for listing the solutions to SOMA, either by hand or
machine computation, have been described (for references, see 1-1]). In order to
illustrate parallel search as formulated above, it suffices to consider the most
straightforward backtracking scheme, which we describe as follows.

Seven lists are constructed. The A list consists of the 144 possible positions
and orientations of the A piece. These are represented octally as above. Similarly
the other six lists are constructed.

List A B C D E F G

Length 144 64 72 72 96 96 144

These lists are constructed prior to the search for all ways of assembling the cube.
Let X be the set of integers from to 144, let X2 be the set of integers from

to 64, and so on to X7. The set to be searched is the Cartesian product S X1
X2 XT. The criterion function for the problem is defined by:

T if (ix)x OR... OR (i7)7 777777777,
qg(il, i2, iv)

F otherwise,

where (i)k denotes the 27 bit word appearing in the ith entry of Xk, and OR denotes
bit by bit Boolean "or". The criterion function specifies that the 27 cells of the
cube should be filled using the available pieces.

52 JAY P. FILLMORE AND S. G. WILLIAMSON

The search on a Cartesian product was described in 2. We describe briefly
the blocks in the partitions of the chain 7z > t2 > > roT. Note that 7 is the
discrete partition.

r consists of 144 blocks B(1), ..., B(144), where

B(i) {(il, X2’ "’"’ X7)IX2 G X2, "’", x7 G X7}
{il} x X2 x x X7.

72 consists of 144.64 9216 blocks B(il, i2), i 1, 144, 2 1, 64,
where

B(ix,i2) {ix} x {i2} x X3 X X X7

Note that B(i, i2) is a subblock of B(il).

rt7 consists of 144.64.72.72.96-96. 144 6.340 x 1013 (approx.) blocks
B(il, ..-, i7), each consisting of a single element of S.

Tests p. on the blocks are defined as follows"
q)l" q%,(B(ix)) 0 always.

{0q___ q,2(B(il, i2))
F

if OR (i2)21 8,

if I(i)x OR (i2)21 < 8.

(0
(’P3" qg=3(B(i, i2, i3)) (.F

if I(ix)x OR (i2)2 OR (i3)31 12,

if I(ix)x OR (i2)2 OR (i3)3[< 12.

.p/1:6

similarly defined using 16, 20, 24 on the right.

T
q,7" :p,7(B(il, ..., i7))=

F

if I(ix)a OR’.. OR (iv)TI- 27,

if I(ia)a OR"" OR (i7)1 < 27.

Here Ix denotes the number of nonzero bits in the word x. Note that qg=(B(i,
"",i7))=q(i,’",i7), B(i,,...,iv) being the discrete block {(ia,...,iT)}.
These tests simply determine whether or not the partially assernbled pieces are
nonoverlapping or not.

The SOMA cube admits the group of order 48 of all symmetries of a cube.
Isomorph rejection is carried out in the following way: clearly the partitions
re1, ..., re7 are stable under the action of the group, i.e., the blocks of any one are
permuted among themselves. The orbits of the group acting on re, are represented
on List A by:

ON BACKTRACKING 53

B(13) 644000000

B(14) 322000000

Location

Back
plane

Back
plane

Size of
Stabilizer

B(15) 000644000 } Same as above, resp.,

B(16) 000322000
but in center plane.

FIG. 5

The B list is so arranged that no cell of the front plane is filled for 2 1, 2,
.-, 32, and no cell of the back plane is filled for 2 33, 34, ..., 64. Thus the first
32 words of this list represent the orbits of the group of order 2 when acting on
B(15) and B(16). The stabilizers of blocks B(15, 1) to B(15, 32) and blocks B(16, 1)
to B(16, 32) are the group consisting of the identity alone.

To summarize the search: search the Cartesian product S X X7
using il 13, 14, 15, 16 only; use 2 1, 64 if i 13 or 14, 2 1, 32
if ia 15 or 16. All elements of the lists X3, ..., X7 are used.

This search was carried out on a Burroughs B6700 machine. A slight modifica-
tion of the backtracking algorithm was used: when il,..., 6 are chosen, 7 is
unique, so when backtracking from k 7, we would go to k 6 rather than trying
to advance with k 7. The search yielded 240 inequivalent solutions. Counting
each one 48 times yields the 48. 240 11,520 solutions stated in the literature.

The search for the solutions to the SOMA cube may be conducted as a
parallel search. The two test functions will be: the test function q, used above,
which we will now denote by qg, and a second test function qg, which we now
describe.

Two cells of the cube will be called adjacent if they share a common square;
a cell will be called isolated if it is not filled, but all cells adjacent to it are filled. If a
piece is removed from an assembled or partially assembled cube, none of the
resulting unfilled cells can be isolated. Hence, at any point in the assembly where an
isolated cell is produced, the algorithm should backtrack.

54 JAY P. FILLMORE AND. S. G. WILLIAMSON

In the notation used above, let

b
b2
b3

400000000 c 240400000
040000000 c2 424040000
004000000 c3 042004000

000000001 c27 000001012b27
be the list of cells bj in the cube and the cells cj adjacent to each one of them.
Define q as follows"

cp," q,(B(il)) 0 always.

q,2 o2(B(,, i2))
0 if((il) OR (i2)2 AND bj 000000000 implies ((i)1

OR (i2)2) AND cj :/: cj for j 1, 2, ..., 27.
F otherwise.

AND denotes bit by bit Boolean "and".

defined similarly to q_ using ((il) OR--. OR (ik)k) for k 3, 4, 5, 6.

.......B’iq7 (J0717 1’ "’ i7)) 0 always

The above is a search using two test functions; with this problem we could
also view it in terms of 28 test functions.

This parallel search was carried out, again on the Burroughs B6700 machine.
The parallel tests were necessarily performed sequentially and, because it appeared
to be the faster test, q’. was performed first.

The results are in Table 2.

Search

nonparallel

parallel

TABLE 2

Test

’ and p:

Program length

(machine code)

367 words

1,223 words

Execution time

337.1 seconds

72.4 seconds

The parallel search for this implementation is faster by a factor of 4.66.
To obtain a slightly more detailed picture of the search, we introduce crude

tree "profiles". Let Ck, k 1,’", 7, denote the number of times testing was
done on some block of rck. Cx + + C7 reflects the total "cost" for all testing.
Let Nk denote the number of blocks of rck which test 0 or T; in the SOMA cube
example, this represents the number of assemblies or partial assemblies of the
cube. For the flow chart, see Fig. 6.

ON BACKTRACKING 55

Nk N + !

N *--N +

FIG. 6

The profiles for the two searches on SOMA are shown in Table 3. The ratio
of "costs" is 4.83, which closely reflects that of the execution times.

TABLE 3

Nonparallel

Nk

4
108

1,993
14,576
25,004
3,909
240

4
192

7,776
143,496

1,399,296
2,400,384
545,764

total 4,496,912

Parallel

4
101

1,316
4,506
3,717
378
240

Ck

4
192

7,272
94,752

432,576
356,832
37,300

total 928,928

Acknowledgment. The authors wish to thank Mr. Dennis White for several
lelpful suggestions in the preparation of this manuscript.

REFERENCES

[1] M. GARDNER, Mathematical games, Sci. Amer., 227 (1972), pp. 176-182.
[2] J. GIrSBURG, Gauss’s arithmetization of the problem of 8 queens, Scripta Math., 5 (1938), pp. 63-66.
[3] S. W. GOLOMB AND L. BAtMERT, Backtrack programming, J. Assoc. Comput. Mach., 12 (1965),

pp. 516-524.

SIAM J. COMI’UT.
Vol. 3, No. 1, March 1974

COMPUTING THE WEAK COMPONENTS OF
A DIRECTED GRAPH*

JEAN FRANCOIS PACAULT"

Abstract. The weak components of a directed graph G are defined as follows: two vertices u and v
of G belong to the same weak component if there is a directed path from u to v and from v to u (then
u and belong to the same strong component) or if one can go from u to v and back through a sequence
of "nonpath" steps. The weak components can be determined with an algorithm involving O(max (num-
ber of vertices, number of edges)) computation time. The algorithm first determines a partition C1,.., Cp of the set V of vertices of G such that the weak components are the unions of Ci’s of consecutive
subscripts, and then groups consecutive Ci’s together to form the weak components.

Key words, algorithm, connectivity, directed path, directed graph, weak component

1. Introduction. The concept of weak components of a directed graph was
first introduced by R. L. Graham, D. E. Knuth and T. S. Motzkin [2]: two vertices
u and v belong to the same weak component if they belong to the same strong
component--that is, if there is a directed path from u to v and from v to u--or if
one can go from u to v and back through a sequence of "nonpath" steps. (There is
a "nonpath" from u to v if and only if there is no directed path from u to v.) It
has been shown that the weak components constitute the finest partition of the
set of vertices of the graph which is totally ordered by the relation that the graph
represents.

Knuth [1, Prob. 34] stated as an open problem the task of finding all weak
components of a given directed graph as efficiently as possible.

Following is an algorithm involving an O(max (number of edges, number of
vertices)) number of steps, if the algorithm is implemented on a random access
computer, to determine the weak components of an acyclic graph. This algorithm
first partitions the set of vertices V into subsets C1, "’, Cp such that the weak
components are the union of Ci’s of consecutive subscripts, and then groups the
Ci’s together to form the weak components (the Ci’s are such that any path of
the graph leads through a sequence of Ci’s, with strictly decreasing, and, for all
i, for any vertex v belonging to C, for any j smaller than i, there is a path from v
to some vertex in C).

For simplicity, we shall assume that we are dealing with an acyclic graph.
However, both the algorithm and the mathematical results it relies on can be
extended to determine the weak components of any directed graph, acyclic or
not, by first using Tarjan’s algorithm [3] to find the strong components.

2. Definitions. Let G be the directed graph of a binary relation R over a
finite set V. We assume G is acyclic; see 5. Let R + denote the transitive closure
of R, and let R- be the complementary relation.

Received by the editors March 14, 1973. This research was sponsored by the United States Air
Force, Air Force Office of Scientific Research, under Grant AFOSR-71-2076.

t Department of Electrical Engineering and Computer Sciences and the Electronics Research
Laboratory, University of California at Berkeley, Berkeley, California 94720.

The concept of weak component should be distinguished from the concept of ordinary connected
"components", which are defined for the undirected graph formed by disregarding the orientations.
Some authors have used the term "weak component" for the latter concept.

56

WEAK COMPONENTS OF A DIRECTED GRAPH 57

DEFINITION 1. The binary relation R1 over V defined by

a R1 b.cc,(a b or (a R + b and b R + a))

is an equivalence relation. The equivalence classes it determines are the strong
components of G. As G is here assumed to be acyclic, the strong components of
G are the nodes of G.

DEFINITION 2. The binary relation R2 over V defined by

a R2 b (a R b or (a R + + b and b R + + a))

is an equivalence relation [2]. The equivalence classes it determines are the weak
components of G.

From now on, unless otherwise specified, G is assumed to be an acyclic
graph. The strong components of G are then the vertices of G.

We define the partition C1,’", Cp as follows: vertex u belongs to Ci+l if
and only if the longest path from u to any terminal vertex is of length i.

DEFINITION 3. Vertex u belongs to C if and only if there is no arc coming
out of u.

DEFINITION 4. Vertex u belongs to Ci+ if and only if all the arcs coming out
of u go to nodes in some Cj’s, for values of j smaller than + 1, and there is a
node v in C such that (u, v) is an arc of G.

These two definitions can be rewritten as follows..
DEFINITION 3’. U C (V V V,/,/R- v).
DEFINITION 4’. U Ci + ((V v 6 V, u R v v Cj, j =< i) and (zi v Ci such

that u R v)).

3. Theorems.
LEMMA 1. If u belongs to Ci, v belongs to Cj and is smaller than or equal to j,

then there is no path from u to v. (That is, u R + v).
Proof. If not, then there exist Uo u, u1,"-, u, v, for some n greater

than zero, such that u Uo R u1,"’, u,_ Ru, v.
It follows that ug belongs to C, for some k smaller than i, for all g 1, ..., n,

contradicting the fact that is smaller than j. 1-]

COROLLARY. If U and v belong to the same Ci, then they belong to the same
weak component.

LEMMA 2. If C and C, for k greater than j, are contained in the same weak
component W, then, for all j, <= j <= k, Cj is contained in W.

Proof. Let C and C be part of a weak component W, let j be such that

=< j __< k, and let u belong to Ci, v belong to Cj, w belong to C.
Since w and u are both in W, we have w R + / u. Since __< j =< k, Lemma

proves that u R +- v and v R /- w. Therefore, w R +- / v and v R +- / w, that is
C is included in W. [q

Lemmas and 2 prove that the weak components are the unions of con-
secutive blocks of Ci’s. All we must do to complete the determination of weak
components is to characterize the boundaries between these blocks.

THEOREM 1. C and Ci+l are both contained in the same weak component if
and only if there exists a vertex u belonging to C/+1, and a vertex v belonging to

Cj, for some j smaller than + l, such that u R + v.

58 JEAN FRANCOIS PACAULT

Proof. (i) If such u, v exist, we have u R + v and, by Lemma 1, for any w in
Cg, v R + w and w R + u. Therefore, we have u R + + w and w R + u. Hence
Ci and Cg+l are both contained in the same weak component.

(ii) Conversely, assume that Cg and Ci+l are contained in the same weak
component W.

Then for any x in Ci_t_ and any w in Ci, there exist Uo x, u, ..., u, w
such that x Uo R + u 1,..., R + u, w. Therefore, there exists k such that
uk belongs to Cl, for some greater than i, and uk+ belongs to Cj for some j
smaller than + 1.

If is greater than + 1, there exists u belonging to Cg+ such that u R + u.
Otherwise, let u be u. Let v be u+ 1. It follows that u R + v. l

4. Description of an algorithm to find the weak components. An algorithm to
find the weak components can be based on the preceding theory as follows.

Determine the partition C1, "’, Cp of V by performing a depth-first search
[3] of the graph, and set label (v):= if v belongs to Cg. Determine for each node
v the function lowest (v) min (label(w) w R v).

Then, for each node, increase lowest (v) by one if there exists w in Cowest<v)
such that w R-v. (Therefore, it is intuitively seen that if v belongs to Ci, then
Cowest<)- 1, "’", Cg will be contained in the same weak component. This is proved
by Lemma 3 and its corollaries.)

Then group consecutive Cg’s together, according to the criterion of Theorem
1, by grouping together subsets Ci,’", Cg+ if there is a node v in Ci such that
lowest (v) equals + k + 1.

A possible implementation is as follows. (G is represented by an adjacency
structure, such that w is in the adjacency list of v if and only if v R w.)

begin
integer p, i;
procedure partition (v)
comment this procedure determines label (v), which is the subscript of the Cg

that v belongs to. Number (i) is the number of nodes belonging to Cg, and
p the number of subsets Cg in the partition, n(w) is the number of nodes v
in Cowst<w) such that v R w;

begin
for w in the adjacenty list of v and w is not yet labeled do
partition (w);
label (v) :: 1;
for w in the adjacency list of v do
label (v) := max (label (v), label (w) + 1);
p := max (p, label (v));
number (label (v)) := number (label (v)) + 1;
for w in the adjacenty list of v do
begin if lowest (w) label (v) then n(w) := n(w) +

else if lowest (w) > label (v) then
begin n(w) := 1;

lowest (w) := label (v);
end

WEAK COMPONENTS OF A DIRECTED GRAPH 59

end
end partition;
procedure weakcomp
comment this procedure groups consecutive Ci’s together, once lowest (v) has
been determined for each node v;
begin integer i, k;

for v a vertex do
begin if n(v) < number (lowest (v))

then lowest (v) "= lowest (v) + 1;
end;
for v a vertex do

high (label (v)) "= max (high (label (v)), lowest (v))"
i’=0;
k "=0;

L2 start new component
L1 i’=i+1.

if =< p then
begin

put Ci in current component;
k max (k, high (i));
ifk > + go to Ll else go to L2

end;
end weakcomp
p "=0;
for "= step until V do number (i) "= high (i) "= 0;
comment V is the total number of nodes;
for v a vertex do

begin label (v) "= 0; lowest (v) V + 1; end;
for v a vertex and v is not yet labeled do partition (v);
weakcomp

end;

THEOREM 2. This algorithm actually determines the partition C1, "", Cp.

Proof. The proof of this fact is straightforward from the definitions.
LEMMA 3. Let v belong to Ci, and let k be equal to lowest (v); then
(i) either, for all u’s in Ci+1 LJ LJ Ck_ 1, we have u R + v and for all w’s

in Ck, we have w R + v, or

(ii) for all u’s in Ci+l LJ C_2, we have u R + -v, and there exist w
and w2 in C_1 such that w R + v and w2 R + v.

Proof. The definition of the function lowest (v), as it is computed in pro-
cedure weakcomp, clearly implies either that for all u’s in Ci+ U U C_ 1, we
have u R- v and for all w’s in C, we have w R + v, or that, for all u’s in Ci+ LJ
LI Ck_2, we have uR- v, and there exist w and w2 in Ck-1 such that w R v
and W2 R- v.

Moreover, if u belongs to Cj with j smaller than k lowest (v), and if
u R-v holds, we have u R + -v, for otherwise there would exist some node x,
with label (x) greater than and smaller than j, such that u R + x R v. Hence we

60 JEAN FRANCOIS PACAULT

would have lowest (v) smaller than or equal to label (x) + 1, which is smaller
than k. V]

COROLLARY 1. Let v belong to Ci, and lowest (v) be equal to + 1. Then, for
all u’s in Ci+ 1, we have u R + v.

Proof. Case (ii) of Lemma 3 cannot occur here, for there is no node w in

Clowest()-1 Ci such that w R + v. Therefore, we are in case (i), and all the nodes

uinCi+laresuchthatuR +v.
COROLLARY 2. Let k be the maximum, over all nodes v belonging to a given Ci,

of lowest (v) (i.e., k is equal to high (i), as it is computed in procedure weakcomp).
Then Ci, Ci+l, Ck-1 are contained in the same weak component.

Proof The proof is straightforward after Theorem and Lemma 3.
TIEOREM 3. This algorithm actually determines the weak components.
Proof. The result of the test "k > + 1" performed in procedure weakcomp

determines whether C and Ci + are contained in the same weak component. We
want to show that C and C + are parts of the same weak component if and only
if the condition "k > + 1" holds in procedure weakcomp.

Clearly, when the test is performed in procedure weakcomp, we have
k max (high (J) lJ <- i).

(a) If k is bigger than + 1, then there exists j smaller than or equal to
such that k high (j). Hence, after Corollary 2 of Lemma 3, C and Ck_ are
contained in the same weak component. Therefore, after Lemma 2, C and Ci+
are contained in the same weak component.

(b) If k is equal to + 1, we prove by induction on j that, for all u’s in

C+ and for all v’s in C, we have u R + v (property P), for j smaller than + 1.
Property P holds for j i, after Corollary of Lemma 3, since high (i)is

equal to + 1.
If property P holds for h i, 1,...,j + 1, then, for v belonging to C,

either
--lowest (v) is smaller than i+ 1. Then after Lemma 3, there exists w in

Clowest(t0 or Clowest(v)_ 1, such that w R v. (w can belong to Clowest(v)_ only if
lowest (v) is greater than j + 1). Therefore, as property P holds for h greater
than j, for all u’s in Ci+ 1, we have u R / w R v, or

---lowest (v) is equal to + 1. Then, after Lemma 3, either
---for all u’s in Ci+ 1, we have u R + v, or

there exists w in C such that w R v. Therefore, as property P holds for h
equals i, for all u’s in C+ 1, we have u R + w R v.

Thus, if k is equal to + 1, for all u’s in Ci+l and all v’s in Ci U C1, we
have u R + v. Hence, by Theorem 1, Ci/l and C are not contained in the same
weak component.

(c) k cannot be smaller than + 1, as high (i) is always bigger than i.
TrnOREM 4. This algorithm requires O(max (number of vertices, number of

edges)) computation time, if it is implemented on a random access computer.

Proof. The proof is straightforward, since procedure partition is called
exactly once for each vertex.

5. Possible extension. This algorithm can be extended to be used for any
graph, acyclic or not, as follows. First, use Tarjan’s algorithm [3] to determine

WEAK COMPONENTS OF A DIRECTED GRAPH 61

the strong components by performing a depth first search. For each strong com-
ponent SC so determined, compute label (SC) and lowest (SC) according to
procedure partition. Then shrink the strong components SC to get an acyclic
graph, by discarding the edges interior to the strong components, and creating
a new vertex v such that label (v) label (SC), lowest (v) lowest (SC), where
the set of edges coming into or going out of v is the same as the set of edges coming
into or going out of SC. Then apply the procedure weakcomp to the acyclic
graph.

Acknowledgment. Sincere thanks are due to Professor E. L. Lawler for his
encouragement and his help in preparing the manuscript, and to the two anony-
mous referees for their valuable criticisms.

REFERENCES

1] V. CHVATAL, D. A. KLARNER AND D. E. KNUTH, Selected combinatorial research problems, Rep.
STAN-CS-72-292, Computer Science Department, Stanford Univ., Stanford, Calif., 1972.

[2] R. L. GRAHAM, D. E. KNUTH AND T. S. MOTZKIN, Complements and transitive closures, Discrete
Math., 2 (1972), pp. 17-30.

[3] R. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.

SIAM J. COMPUT.
Vol. 3, No. 1, March 1974

FINDING DOMINATORS IN DIRECTED GRAPHS*

ROBERT TARJAN’

Abstract. This paper describes an algorithm for finding dominators in an arbitrary directed
graph. The algorithm uses depth-first search and efficient algorithms for computing disjoint set unions
and manipulating priority queues to achieve a time bound of O(Vlog V + E) if V is the number of
vertices and E is the number of edges in the graph. This bound compares favorably with the
O(V(V + E)) time bound of previously known algorithms for finding dominators in arbitrary directed
graphs, and with the O(V + E log E) time bound of a known algorithm for finding dominators in
reducible graphs. If E => Vlog V, the new algorithm requires O(E) time and is optimal to within a
constant factor.

Key words, algorithm, binary tree, complexity, connectivity, depth-first search, directed graph,
dominator, equivalence algorithm, graph, immediate dominator, priority queue, search, set union,
stack, topological sorting, tree

1. Introduction. The following graph-theoretic problem arises when one is
attempting to optimize computer code [1], [2]: suppose G is a directed graph with
a start vertex s. (G might represent the flow between blocks of a computer program;
vertex s then represents the initial block of the. program.) If vertex d lies on every
path from vertex s to vertex i, then d is called a dominator of i. If d is a dominator
of and every other dominator d’ of also dominates d, then d is called an im-
mediate dominator of i. It is easy to prove that each vertex has a unique immediate
dominator if it has any dominators [1], [2]. We wish to find the immediate
dominator of each vertex in the graph.

The dominators problem is relatively new and has not been studied exten-
sively. Aho and Ullman’s algorithm [1 for finding dominators deletes each vertex
v in turn from G and tests which vertices are reachable from s. Any reachable
vertex is not dominated by v. This algorithm requires O(V(V + E)) time if the
problem graph has V vertices and E edges. Purdom and Moore’s algorithm [3]
has the same time bound; no previously published algorithm is faster in general.
See [2], [-4], [5] for other algorithms. Aho, Hopcroft and Ullman [6] have con-
structed an O(V + E log E) algorithm for finding dominators in a restricted class
of graphs called reducible graphs [7], [8], [9]. Their algorithm is based on an
efficient method for finding least common ancestors in trees.

This paper describes the use of depth-first search [10] to reveal the structure
of directed graphs. Using efficient algorithms for computing disjoint set unions
[11], [12], [13] and for manipulating priority queues [14], [15], we may calculate
dominators from the search information. The resultant dominators algorithm

Received by the editors April 26, 1973. This research was supported in part by the National
Science Foundation under Grant GJ-33170X while the author was at Stanford University.

5" Department of Electrical Engineering and Computer Sciences, University of California at
Berkeley, Berkeley, California 94720.

1The graph-theoretic definitions used in this paper are more or less standard. For those un-
familiar with graph theory, these definitions appear in Appendix A, along with a definition of the big
"O" notation.

62

FINDING DOMINATORS IN DIRECTED GRAPHS 63

has an O(V + E) space bound and an O(Vlog V + E) time bound. The method is
optimal to within a constant factor if E _> V log V.

The paper is divided into several sections. Section 2 describes depth-first
search and its application to directed graphs. Section 3 describes four dominator-
preserving graph transformations which use search information and which form
the heart of the dominators algorithm. Section 4 outlines the algorithm. Sections
5 and 6 give the details of some of the necessary calculations, and 7 presents the
complete algorithm. Section 8 gives an even faster algorithm for finding dom-
inators in certain special graphs, suggesting that a faster algorithm may exist in
general. Section 9 gives conclusions.

2. Depth-first search. We wish to calculate IDOM(v), the immediate domi-
nator of v, for each vertex v in a directed graph G with V vertices and E edges.
Figure shows a graph for which we might wish to solve this problem. We begin
by exploring G starting at vertex s and marking all vertices reached. Vertex s and
vertices remaining unmarked have no dominators, while all other vertices have
dominators. The problem is then reduced to finding dominators in the subgraph
G1 whose vertices are all those reachable from s. In G1 each vertex has a domi-
nator. Furthermore, we have the following lemma.

FIG. 1. A directed graph in which we wish to find dominators

LEMMA [1], [2]. We may construct a tree (called the dominator tree of G)
whose vertices are those of G and such that w is a son of v in the tree if and only
if v is the immediate dominator of w. The ancestors of w in the tree are precisely the
dominators of w. (Figure 2 shows the dominator tree of the graph in Fig. 1.)

64 ROBERT TARJAN

F(. 2. The dominator tree of the graph in Fig. 1. Vertex L in Fig. has no dominators.

To mark the vertices reachable from s, we carry out a depth-first search of G
[10]. That is, we start at vertex s and choose an edge leading from s to explore.
Traversing the edge leads to a vertex, either new or already reached. In general,
we continue the search by selecting and traversing an unexplored edge from the
most recently reached vertex which still has unexplored edges. Eventually each
edge will be traversed exactly once. To implement such a search, we use a set of
adjacency lists A(v), one for each vertex v in the graph; if (v, w) is an edge of G,
then w appears in the adjacency list A(v). Each edge is represented exactly once.
Here is a recursive procedure for carrying out a depth-first search:

procedure DFS(v)
begin comment v is the most recently reached vertex;
MARK(v) := true;
for w e A(v) do

if-- MARK(v) then DFS(w)
end;

The following statements will then mark every vertex reachable from s, by
applying DFS:

comment mark all vertices reachable from s
for each vertex v do MARK(v) := false;
DFS(s);

A depth-first search yields much more information than just which vertices
are reachable from the start vertex of the search. In particular, it gives enough
information about the connectivity structure of the graph to efficiently determine
dominators. Let us add a few more calculations to the search. (Henceforth for
convenience we shall assume that all vertices in G are reachable from s.)

DFS is a recursive procedure; the successively reached new vertices are input
parameters to DFS and thus are stored on a stack (in any implementation of DFS).

FINDING DOMINATORS IN DIRECTED GRAPHS 65

This stack contains all vertices reached which may still have unexplored edges,
and the vertices as they appear in order on the stack determine a path in G from
s to the current vertex being examined during the search. Suppose we keep track
of which vertices are stacked at any given time, and that we number the vertices
from to V in the order they are reached during the search. Then a depth-first
search of a directed graph partitions the edges traversed into four classes:
(1) Edges (v, w) with w unmarked when (v, w) is explored, called tree arcs.
(2) Edges (v, w) with w stacked when (v, w) is explored, called fronds.
(3) Edges (v, w) with NUMBER(v) < NUMBER(w) and w unstacked when (v, w)

is explored, called reverse fronds.
(4) Edges (v, w) with NUMBER(v) > NUMBER(w) and w unstacked when (v, w)

is explored, called cross-links.
Lemma 2 below gives the properties of edges in these four classes. In par-

ticular, the tree arcs determine a spanning tree T of G which has root s. One
more numbering scheme based on depth-first search is useful. Let the vertices of
G be numbered from V to as they are unstacked during the search. We shall
denote this numbering by SNUMBER(v). Lemma 3 below gives properties of
SNUMBER’s. Here is an elaborated version of the depth-first search procedure
which computes both types of number for each vertex, divides edges into their
classes, and also counts the number of descendants ND(v) of each vertex v in the
spanning tree T.

procedure CLASSIFY(G, s);
begin comment the edge-classifying procedure uses the following elaborated

version of DFS. Variable m denotes the last NUMBER assigned to any
vertex. Variable n denotes the last SNUMBER assigned to any vertex. The
procedure assumes that G is represented as a set of adjacency lists A(v).
NUMBER(v) 0 if and only if v has not been reached. SNUMBER(v) 0
if and only if v has not yet been unstacked

procedure DFSEARCH(v)
begin
m := NUMBER(v) := m + 1
ND(v) := 1;
for w 6 A(v) do

if NUMBER(w) 0 then
begin

label(v, w) a tree arc;
DFSEARCH(w)
ND(v) := ND(v)+ ND(w);

end
else if SNUMBER(w) 0 then

begin comment vertex w is stacked;
label(v, w) a frond;

end
else if NUMBER(v) < NUMBER(w) then

label(v, w) a reverse frond
else label(v, w) a cross-link;

66 ROBERT TARJAN

n:= SNUMBER(v):= n- 1;
comment v is now unstacked;

end;
comment to classify the edges we initialize and call DFSEARCH;
m:=0;
n:=V+l;
for each vertex v do NUMBER(v) := SNUMBER(v) := 0;

DFSEARCH(s);
end;

Figure 3 illustrates what CLASSIFY does to the graph in Fig. 1. It should
be clear that this elaborated version of depth-first search correctly numbers the
vertices and classifies the edges. Reference [10] contains a proof that these cal-
culations require O(V + E) time and space. Lemmas 2-5, given without proof,
state basic properties of the numbers calculated by CLASSIFY.

(5,12),

/ 1 \ (o,)

I,ol .L \1’

T

FIG. 3. Depth-first search applied to graph in Fig. 1. Tree arcs are labeled T, fronds F, reverse fronds
R, and cross-links C. Numbering vertices from to V as vertices are reached during the search gives the
first number at each vertex. Numbering the vertices from V to as vertices are unstacked during the
search gives the second number at each vertex.

LEMMA 2. Suppose that all vertices of a directed graph G are reachable from
vertex s, and that the edges of G are divided into classes using CLASSIFY(G, s).
Then:

(i) The tree arcs form a directed tree T with root s which contains all vertices
in G. We shall denote the existence of a tree arc (v, w) by v - w, and the
existence of a path from v to w in T by v - w.

(ii) If (v, w) is a frond, then NUMBER(w) < NUMBER(v), and w v in T.
(iii) If (v, w) is a reverse frond, then v w in T.
(iv) If (v, w) is a cross-link, then neither v - w in T nor w -*4 v in T.

FINDING DOMINATORS IN DIRECTED GRAPHS 67

LEMMA 3. If (V, W) is a tree arc, a reverse frond, or a cross-link, SNUMBER(v)
< SNUMBER(w). If (v, w) is a frond, SNUMBER(v) > SNUMBER(w).

LFMM, 4. Let v be a vertex in G. Then the number of descendants of v in the
spanning tree T is given by:

ND(0= + ND(w).

LEMMA 5. Statements (i), (ii), (iii) and (iv) below are equivalent.
(i) v w in T.

(ii) NUMBER(v) NUMBER(w) < NUMBER(v) + ND(v).
(iii) SNUMBER(v) =< SNUMBER(w) < SNUMBER(v) + ND(v).
(iv) NUMBER(v) =< NUMBER(w)and SNUMBER(v) =< SNUMBER(w).
Lemma 5 gives us three methods for identifying the descendants of a vertex

and allows us to dynamically identify fronds, reverse fronds, and cross-links if we
so desire.

LEMM 6. G is acyclic if and only if G has no fronds.
Proof. If G has a frond (v, w), then the frond and the set of tree arcs joining

v and w form a cycle. If G has no fronds, all edges (v, w) satisfy SNUMBER(v)
< SNUMBER(w). Since any cycle in G must have at least one arc (v, w) with
SNUMBER(v) > SNUMBER(w), G has no cycles.

COROLLARY 7. If G is an acyclic directed graph, CLASSIFY assigns SNUM-
BER’s to G so that if (v, w) is an edge, SNUMBER(v)< SNUMBER(w). Thus
CLASSIFY gives an O(V + E) algorithm for "topologically sorting" the edges of
G. (See Knuth [! 6] for further discussion of this problem.)

LEMMA 8. Let p be a path from v to w in G. Let vertices be ident!fied by their
number. Suppose v < w. Then p contains some common ancestor of v and w in T.

Proof. Let Tu with root u be the smallest subtree of T containing all vertices
on the path p. We prove that p passes through u. If u v or u w, the result is
immediate. Otherwise, let u < u2 < < u, be the sons of u such that for each
ui, some descendant of ui is on p. For any i, let Tu, be the subtree of T with root
ui. If n 1, p must pass through u since p is minimal. If n > 1, there must be some
ui, uj, < j, such that p leads from T,, to T,j. This is true since v < w and all the
vertices in T,i are numbered smaller than all the vertices in T,j if < j. But p can
only get from T,, to T,j by passing through u, since the only edges leading from
lower numbered vertices to higher numbered ones are tree arcs and reverse
fronds. The lemma follows.

The properties of depth-first search presented above may be used to construct
a good algorithm to solve the dominators problem. One way to find dominators
is to convert G into an equivalent acyclic graph, by deleting each frond and re-
placing it by an equivalent set of reverse fronds and cross-links to preserve
dominators. In the resultant acyclic graph, the dominators may be found for the
vertices in SNUMBER order from to V, since any path leads through vertices
with increasing SNUMBER. This algorithm has an O(V2) time bound [17]; the
time bound is not linear in the number of edges because the number of added
reverse fronds and cross-links may be large. To get a faster algorithm, we must
be a little more clever.

68 ROBERT TARJAN

The idea we use is to convert G into a graph with no fronds and no cross-
links by adding suitable reverse fronds. We use four simplifying transformations
which preserve dominators to accomplish this. First we delete all fronds and
replace them with a simpler set of fronds, at most one leaving each vertex. Then
we convert cross-links to reverse fronds, we combine fronds and reverse fronds
to give new reverse fronds, and we delete all but one reverse frond entering each
vertex. The last three transformations must be carried out simultaneously with
the dominator calculations. The computation proceeds through the vertices in
NUMBER order, from V to 1. Section 3 describes the four transformations and
proves that they preserve dominators.

3. Dominator-preserving transformations. Suppose that a depth-first search
of a directed graph G is carried out using CLASSIFY(G, s), and that all vertices
of G are reachable from the start vertex s. For any vertex v, let F(v) {wlw 4: v
and :lu(w v - u in T and (u, w) is a frond of G)}. Let HIGHPT(v) be the highest
numbered vertex in F(v) if F(v) is nonempty. (Here and henceforth we shall only
use one numbering of vertices, NUMBER as calculated by CLASSIFY.) Since
each element in F(v) is an ancestor of v in T, it is clear that w F(v) implies
w HIGHPT(v). Let G’ be the graph formed from G by deleting all fronds and
adding a new frond (v, HIGHPT(v)) for each vertex v for which HIGHPT(v) is
defined. This is our first transformation, called frond replacement. Figure 4 shows
the graph in Fig. 3 transformed in this way.

FIG. 4. Frond replacement applied to the graph in Fig. 3. Vertices are numbered in search order.
Vertex K loses a frond; vertices I, F and C gain a frond.

We have the following results.
LEMMA 9. Let G’ be formed from G by frond replacement. If w v u in T

(the spanning tree of G and G’), and if (u, w) is a frond in G, then there is a path
from v to w in G’ which consists only offronds.

FINDING DOMINATORS IN DIRECTED GRAPHS 69

Proof. The proof is by induction on the length of the tree path from w to v.
If w v, then the lemma is true since there is a path containing no edges from
any vertex to itself. Let the lemma be true whenever the tree path from w to v
has length less than k, and suppose the tree path from w to v has length k. Since G
contains a frond (u, w) with w- v u, we F(v) and HIGHPT(v) is defined.
Furthermore HIGHPT(v) v and w- HIGHPT(v) v. By the induction
hypothesis, there is a path of fronds from HIGHPT(v) to w in G’. Adding (v,
HIGHPT(v)) to the front of this path gives a path in G’ from v to w which consists
only of fronds. By induction the lemma is true.

LEMMA 10. Vertex d dominates vertex v in G if and only if d dominates v in G’.
Proof. Suppose w does not dominate v in G. Then in G there is a path from

s to v which does not contain w. Suppose this path contains a frond (u, u’) with
u’ w. Then we may replace the part of p up to and including the last such frond
by a path of tree arcs. This gives us a path in G from s to v which contains neither
w nor any frond (u, u’) such that u’ - w. If we now replace each frond in the path
by the corresponding path of fronds in G’ guaranteed by Lemma 9, we get a path
p’ in G’ from s to v which doesn’t contain w, and w does not dominate v in G’.

Conversely, suppose w does not dominate v in G’. Then there is a path p’
in G’ from s to v which doesn’t contain w. Suppose this path contains a frond
(u, HIGHPT(u)) with HIGHPT(u) w. Then we may replace the part of p’ up
to and including the last such frond by a path of tree arcs. This gives us a path
p" in G’ from s to v which contains neither w nor any frond (u, HIGHPT(u)) with
HIGHPT(u) w. Corresponding to any remaining frond (u, HIGHPT(u)) on
path p" there is a frond (u’, HIGHPT(u)) in G with u u’. If we replace each
frond (u, HIGHPT(u)) in p" by a path of tree arcs from u to u’ followed by the
frond (u’, HIGHPT(u)), we get a path p in G from s to v which doesn’t contain
w. It follows that w does not dominate v in G, and the lemma is true.

To calculate dominators in G, we apply frond replacement and calculate
dominators in the transformed graph G’. Observe that if frond replacement is
applied to G’, the result is G’ itself. Henceforth we shall assume that G is a graph
which has been explored using CLASSIFY and whose fronds have been replaced
as specified above. We shall identify vertices using the NUMBER assigned to
them by CLASSIFY.

LEMMA 11. Let (u, v) and (u l, v) be two reverse fronds in G, with u > u. Let
G’ be the graph formed from G by deleting edge (u v). We call this transformation
"reverse frond deletion". Then d dominates v in G if and only if d dominates v in G’.

Proof. Since G’ is a subgraph of G, every path in G’ is a path in G. Thus if
d dominates v in G, d dominates v in G’. Conversely, suppose w does not dominate
v in G. Then there is a path p in G from s to v which doesn’t contain w. If p
doesn’t contain (u, v), then p is a path in G’ and w doesn’t dominate v in G’.
Suppose p contains (u, v). If w is a descendant of u, we may replace the part of
p up to and including edge (u l, v) by the path of tree arcs from s to u followed by
the frond (u, v) to get a path p’ in G’ from s to v which doesn’t contain w. If w is
not a descendant of u, we may replace (u, v) in p’ by the path of tree arcs from
u to v and get a path p’ in G’ from s to v which doesn’t contain w. In no case
can w dominate v in G’, and the lemma is true.

70 ROBERT TARJAN

LEMMA 12. Let v be a vertex in G such that one frond (v, HIGHPT(v)) leaves v,
at most one reverse frond (say (u, v)) enters v, and no cross-links or fronds enter v.
Let G’ be the graph formed from G by deleting frond (v, HIGHPT(v)) and adding
(u, HIGHPT(v)) if (u, v) is defined and (u, HIGHPT(v)) is a reverse .]Fond (i.e.,
u < HIGHPT(v)). We call this transformation "frond deletion". Then d dominates
w in G if and only if d dominates w in G’, assuming no frond deletions have been
applied to vertices x < v.

Proof. Suppose x does not dominate w in G. Then there is a path p in G
from s to w which doesn’t contain x. If p doesn’t contain (v, HIGHPT(v)), then p
is a path in G’. If p contains (v, HIGHPT(v)), then p must contain either (u, v) or
the tree arc entering v. If x is not a proper ancestor of HIGHPT(v), then we can
replace the part of p up to and including (v, HIGHPT(v)) by the path of tree arcs
from s to HIGHPT(v) and have a path in G’ which doesn’t contain x. Suppose
x is a proper ancestor of HIGHPT(v). If the edge before (v, HIGHPT(v)) in p is
(u, v) and u < HIGHPT(v), then we may replace (u, v) and (v, HIGHPT(v)) by
(u, HIGHPT(v)) and have a path in G’ which doesn’t contain x. If the edge before
(v, HIGHPT(v)) is a tree arc, or if it is (u, v) and u > HIGHPT(v), then by Lemma
9 we may replace (v, HIGHPT(v)) and the edge before it by a path of fronds and
have a path in G’ which doesn’t contain x. In any case x doesn’t dominate w in G’.

Conversely, suppose x does not dominate w in G’. Then there is a path p’
in G’ from s to w which doesn’t contain x. If p’ doesn’t contain (u, HIGHPT(v)),
then p’ is a path in G. Suppose p’ contains (u, HIGHPT(v)). If x - v, we may
replace (u, HIGHPT(v)) in p’ by (u, v) and (v, HIGHPT(v)) to give a path in G which
doesn’t contain x. If x v, we may replace the part of p’ up to and including
(u, HIGHPT(v)) by the path of tree arcs from s to HIGHPT(v) and have a path in G
which doesn’t contain w. In no case does x dominate w in G, and the lemma is true.

The dominators algorithm works in the following way" first we apply frond
replacement to G. Next, we process the vertices from V to 1. To process a vertex
v, we convert all incoming cross-links to reverse fronds (by a transformation yet
to be described), we eliminate all but one reverse frond entering v by applying
reverse frond deletion, and we eliminate the frond (if any) leaving v by applying
frond deletion. We are left with at most one tree arc and one reverse frond entering
v. We then update the partially calculated dominators and proceed to the next
vertex.

In order to understand the transformation of cross-links into reverse fronds,
we must examine in detail the way dominators are calculated. Let G be a graph
which has been explored using CLASSIFY and whose fronds have been replaced.
Let G(i) be the subgraph of G which contains all the tree arcs in G plus all edges
leading to vertices v such that NUMBER(v) > i. Let the i-th semidominator of
vertex v (abbreviated SDOM(i, v)) be the immediate dominator of v in G(i). In
all that follows we shall assume that v 4:1 (that is, v is not the start vertex) so all
semidominators are defined. The dominators algorithm calculates SDOM(i 1,
v) for all vertices when vertex is processed. The SDOM values tell us how to
convert cross-links into reverse fronds as well as giving dominators (SDOM(0, v)

IDOM(v)). The lemmas below describe semidominators. By combining these
results with the lemmas above, we can build a dominators algorithm.

FINDING DOMINATORS IN DIRECTED GRAPHS 71

LEMMA 13. /f V - and > v, SDOM(i, v) is the father of vertex v in the tree

generated by CLASSIFY.
Proof. G(i) contains only one edge leading to vertex v; namely, a tree arc.

Every path from s to v must pass through this edge. The lemma follows.
LFMMA 14. For all i, if v =/= then SDOM(i 1, v) & SDOM(i, v).
Proof. For all i, if v 4= 1, the only dominators of v in G(i) lie on the tree path

from s to v. Furthermore, G(i) is a subgraph of G(i 1), so if w dominates v in
G(i 1), w must dominate v in G(i). The lemma follows.

LEMMA 15. If V =/: and SDOM(i, v) i, then IDOM(v) i.

Proof. By Lemma 14, IDOM(v) SDOM(0, v) SDOM(i, v). Thus if
SDOM(i, v) dominates v in G, SDOM(i, v) IDOM(v). Now we show by con-
tradiction that SDOM(i, v) dominates v in G if SDOM(i, v) i.

Suppose to the contrary that there is a path p in G from s to v which does
not contain SDOM(i, v). We must have v. Some edge in p must begin at a
nondescendant of vertex and lead to a descendant of i. Let (u, w) be the last such
edge in p. Then w > i, and all edges following (u, w) in p have both endpoints
among the descendants of i. Since all the descendants of have numbers larger
than i, and since u is not a descendant of i, we may replace the part of p up to
edge (u, w) by a path of tree arcs from s to u and have a path in G(i) which doesn’t
contain i. But this is a contradiction by the definition of SDOM(i, v), and
SDOM(i, v) must dominate v in G. The lemma follows.

LEMMA 16. /f V :/: and iN v, then either SDOM(i,v)= IDOM(v) or
SDOM(i, v) i.

Proof. The proof is by induction on i. If v, SDOM(i, v) by Lemma 13.
Let the lemma be true if i0 < __< v. Suppose io. Vertex is a descendant of
the father of vertex + 1. By the induction hypothesis, either SDOM(i + 1, v)
IDOM(v)or SDOM(i + 1, v)&i+ 1. If SDOM(i + 1, v)= IDOM(v), then

SDOM(i, v) IDOM(v) by Lemma 14. Otherwise SDOM(i + 1, v) + and
SDOM(i + 1, v) va + by Lemma 15. Then by Lemma 14 and the comment
above, SDOM(i, v) i, and the lemma follows by induction on i.

LEMMA 17. If U does not dominate v in G, and edge (u, v) in G is replaced by
edge (IDOM(u), v) to form graph G’, then d dominates w in G if and only if d domi-
nates w in G’.

Proof Suppose x does not dominate w in G. Then there is a path p in G from
s to w which does not contain x. Ifp does not contain edge (u, v) then p is a path in G’.
Suppose p does contain (u, v). Then p contains IDOM(u), and we may replace the
part of p leading from IDOM(u) to v by the edge (IDOM(u), v) and have a path
in G’ from s to w which doesn’t contain x. Thus x does not dominate w in G’.

Conversely, suppose x does not dominate w in G’. Then there is a path p’
in G’ from s to w which doesn’t contain x. If (IDOM(u), v) is not on p’, then p’
is a path in G. Suppose (IDOM(u), v) is on p’. If x u, then since u doesn’t domi-
nate v, there is a path q in G from s to v which doesn’t contain x. By substituting
q for the part of p’ up to and including edge (IDOM(u), v), we get a path p in G
from s to w which doesn’t contain x. Suppose x - u. If every path from IDOM(u)
to u in G contains x, then x dominates u. Also, every path from s to x must con-
tain IDOM(u), since IDOM(u) dominates u. Then IDOM(u) dominates x or

72 ROBERT TARJAN

IDOM(u) x, and either is a contradiction. It follows that there is some path r
in G from IDOM(u) to u which doesn’t contain x. Substituting r and the edge
(u, v) for the edge (IDOM(u), v) in p’, we get a path in G from s to w which doesn’t
contain x. In no case can x dominate w in G, and the lemma is true.

LEMMA 18. Let (u, v) be a cross-link in G. Suppose G is transformed into a new
graph G’ by deleting (u, v) and adding edge (SDOM(v, u), v). We call this trans-

formation "cross-link replacement". Then d dominates w in G if and only if d
dominates w in G’.

Proof. Since (u, v) is a cross-link, v < u. If SDOM(v, u)= IDOM(u), then
the lemma is true by Lemma 17, since u cannot dominate v unless u v,
and u v is impossible by Lemma 2. Suppose SDOM(v, u) - IDOM(u). Then
SDOM(v, u) - v by Lemma 16. Now suppose x does not dominate w in G. Then
there is a path p in G from s to w which doesn’t contain x. If (u, v) is not an edge
of p, then p is a path in G’. Suppose p contains (u, v). If x is not an ancestor of
SDOM(v, u), we may replace the part of p up to and including edge (u, v) by the
path of tree arcs from s to SDOM(v, u) and the edge (SDOM(v, u), v) to get a
path in G’ from s to w which doesn’t contain x.

On the other hand, suppose x is an ancestor of SDOM(v, u). Consider the
part of p from s to u. Let (y, z) be the last edge on this part of p with y =< v. Then
y must be an ancestor of u, since by Lemma 8 any path from y to u must pass
through a common ancestor a of y and u, and this a satisfies a y __< v. Vertex y
must also be an ancestor of v, since y v <__ u, and any ancestor of u which is
not an ancestor of v will have a number greater than the number of v. The part
of p from y to u lies in G(v), so SDOM(v, u) y. Otherwise there would be a
path in G(v) from s to u which didn’t contain SDOM(v, u), an impossibility. Thus
we have a vertex y on p such that x - SDOM(v, u) - y v. We may replace the
part of p from y to v (including edge (u, v)) by the path of tree arcs from y to v.
This gives a path in G’ from s to w which doesn’t contain x, and x does not domi-
nate w in G’.

Conversely, suppose x doesn’t dominate w in G’. Let p’ be a path from s to
w in G’ which doesn’t contain x. If p’ doesn’t contain (SDOM(v, u), v), then p’
is a path in G. Suppose p’ does contain (SDOM(v, u), v). If x u, we may re-
place (SDOM(v, u), v) in p’ by the path of tree arcs from SDOM(v, u) to v and get
a path from s to w in G which doesn’t contain x. If x - u, then there must be a
path q in G(v) (hence in G) from SDOM(v, u) to u which doesn’t contain x. Other-
wise SDOM(v, u) dominates x and x dominates u, which is impossible. Replacing
(SDOM(v, u), v) in p’ by q plus edge (u, v) gives a path from s to w in G which
doesn’t contain x. In no case can x dominate w in G, and the lemma is true.

Lemma 18 tells us how to transform cross-links into reverse fronds. Suppose
that for a fixed v, we know SDOM(v, w) for all vertices w. To convert cross-link
(u, v) into a reverse frond, we apply cross-link replacement. If the resultant edge
is still a cross-link, we apply cross-link replacement to it. We continue until we
get an edge which is a reverse frond.

Now all we need is a method for calculating semidominators. Lemma 13
tells us how to initialize the calculation. Lemma 15 tells us when we can stop
calculating semidominators for a particular vertex. The next lemma indicates
how to update the semidominator values.

FINDING DOMINATORS IN DIRECTED GRAPHS 73

LEMMA 19. Let be a vertex in G such that the only two edges entering are a
tree arc (u, i) and possibly a reverse frond (w, i). If no reverse frond enters i, then
SOMD(i- 1, v)= SDOM(i, v)for all v. If a reverse frond (w, i) enters i, then
SDOM(i-1, v)= w for all v such that i- v and w SDOM(i,v) u, and
SDOM(i 1, v) SDOM(i, v)for all other vertices v.

Proof. If has no frond, cross-link or reverse frond entering it, then G(i)
G(i 1); thus the first part of the lemma is true. Suppose has a reverse frond

(w, i) entering it. Since G(i 1) has no edges but tree arcs which lead to vertices
numbered less than i, any path in G(i 1) which contains (w, i) must terminate
at a descendant of i. Thus the paths from s to nondescendants of are the same
in both G(i) and G(i- 1). This means that if v is not a descendant of i, then
SDOM(i, v) SDOM(i 1, v).

Suppose that v is a descendant of i. If SDOM(i, v) - SDOM(i 1, v), then
there must be a path p in G(i 1) from s to v which doesn’t contain SDOM(i, v),
but no such path in G(i). Path p must contain reverse frond (w, i). But if it is not
true that w - SDOM(i, v) u, we may replace (w, i) in p by the path of tree arcs
from w to and get a path in G(i) from s to v which doesn’t contain SDOM(i, v).
This contradiction implies that if SDOM(i- 1, v)4: SDOM(i, v), then w

SDOM(i, v)- u.
Now suppose it is true that w - SDOM(i, v) u. If SDOM(i, v) u, then if

d SDOM(i, v), d dominates SDOM(i, v) in G(i) and d dominates v in G(i).
(The only arcs entering any ancestor of SDOM(i, v) in G(i) are tree arcs since
SDOM(i, v) < u < i.) On the other hand, any vertex which is not an ancestor
of SDOM(i, v) cannot dominate v in G(i). Thus in G(i) the dominators of v are
exactly the ancestors of SDOM(i, v). Now in G(i 1), if d w, then d dominates
w and d dominates v. If d SDOM(i, v) but d is not an ancestor of w, then d
does not dominate v, since the path of tree arcs from s to w followed by the reverse
frond (w, i) followed by the path of tree arcs from to v is a path in G(i 1) which
doesn’t contain d. Thus the dominators of v in G(i 1) are exactly the ancestors
of w, and SDOM(i 1, v) w. The lemma follows.

Now we have a method for calculating semidominators. We must not over-
look one subtle point. To get dominators, we will calculate semidominators,
applying the various dominator-preserving transformations to simplify the cal-
culations. We must make sure that these transformations preserve not only
dominators but also semidominators; otherwise the intermediate calculations
may go haywire. The next lemma takes care of this worry.

LEMMA 20. Let G’ be formed from G by applying either reverse frond deletion,
frond deletion, or cross-link replacement. Then all semidominator values of G and
G’ agree.

Proof. We must compare dominators in G(i) and G’(i) to verify that the ith
semidominators in G and G’ are the same. Suppose G’ is formed from G by re-
verse frond deletion. Let (u l, v) be the deleted reverse frond, where (u, v) is another
reverse frond in G and u > u. If > v, then G(i) G’(i), and the lemma is true.
If < v, then both (u, v) and (u, v) appear in G(i), G’(i) is formed from G(i) by
reverse frond deletion, and the lemma is true by Lemma 11.

Suppose G’ is formed from G by frond deletion. Let (v, HIGHPT(v)) be the
deleted frond and (u, HIGHPT(v)) the added reverse frond, where only a tree arc

74 ROBERT TARJAN

and a reverse frond (u, v) enter v, and only one frond leaves v. If > HIGHPT(v),
then G(i) G’(i), and the lemma is true. If < HIGHPT(v), then (v, HIGHPT(v))
and (u, v) are in G(i), (u, HIGHPT(v)) is in G’(i), and G’(i) is formed from G(i) by
frond deletion. In this case the lemma follows by Lemma 12.

Suppose G’ is formed from G by cross-link replacement. Let (u, v) be the
cross-link in G which is replaced by (SDOM(v, u), v) to form G’. If >__ v, then
G’(i) G(i), and the lemma is true. If < v, then G(v)is a subgraph of G(i), and
the vth semidominator of u is the same in both G(i) and in G. Edge (u, v) is in G(i)
and edge (SDOM(v, u), v) is in G’(i). It follows that G’(i) is formed from G(i) by
cross-link replacement, and the lemma follows by Lemma 18.

4. An outline of the dominators algorithm. Now we have all the results needed
to build a dominators algorithm. Below is an outline of the algorithm in ALGOL-
like notation.

procedure DOMINATORS(G, s);
begin

a" apply CLASSIFY(G, s) to classify the edges and number the vertices of G
reachable from s;
let G1 be the subgraph of G containing all vertices reachable from s;
let G1 have V1 vertices;
for each vertex v of G not in G1 do IDOM(v) 0;

b" for each vertex v of G1 do calculate HIGHPT(v); apply frond replace-
ment to G1 to form graph G2;

c" tbr V step until 0 do
for v "= until V1 do

calculate SDOM (i, v);
for/’= until V1 do IDOM(i)"= SDOM(0, i);

end;

This algorithm is straightforward and works correctly by the results in 3.
(Frond replacement preserves dominators by Lemma 12.) Step a requires O(V + E)
time by the discussion in 2, and the total time required by all steps except b
and c is O(V + E). Using results in 3 we can give sme details of Step c:

c: comment calculate semidominators;
begin

for v:= 1 until V1 do
d’ begin

using reverse frond deletion, delete all reverse fronds but one
entering vertex v;

let this reverse frond be (LOWPT(v), v);
end;

e: for/:-- until V do calculate SDOM(V, i)using Lemma 13;
for/:= V step- until do

f: for each cross-link (u, i)do
begin

g: convert (u, i) into a reverse frond (w, i) by repeated

FINDING DOMINATORS IN DIRECTED GRAPHS 75

cross-link replacement;
if two reverse fronds now enter then delete one by

reverse frond deletion;
end;

if a frond (i, x) leaves then delete it by frond deletion;
if two reverse fronds now enter x then delete one by reverse

frond deletion;
h: for v := until V1 do apply Lemma 19 to calculate

SDOM(i 1, v);
end;

end;
Consider this implementation of the semidominators calculation. For a

fixed value of i, Step f deletes any frond leaving i. Thus before Step f is executed
for any fixed j, all fronds entering j have been deleted. It follows that the trans-
formations in Step c preserve semidominators, by Lemma 20. Thus Step c as
implemented above works correctly. The total time required by Step c, not in-
cluding Steps g and h, is obviously O(V + E). The dominators algorithm thus
has a linear time bound not including Steps b, g and h. These steps require some
good data structures, which are presented in the next two sections.

5.. Calculating HIGHPT(v). In this section we implement Step b, the cal-
culation of HIGHPT values. A straightforward algorithm for calculating
HIGHPT values requires O(V2) time. With a good scheme for implementing
priority queues, such as Crane’s using binary trees [14] or Hopcroft’s using 3-2
trees [15], we may achieve an O(E log E) time bound. However, if we are a little
more clever, then we can use a good algorithm for computing disjoint set unions
and construct an almost-linear algorithm. First we sort the fronds (u, w) of G by
the NUMBER of w. Then we calculate HIGHPT’s by processing the fronds
(u, w) in order from largest w to smallest w. We will label each vertex exactly once
with a HIGHPT value. If (u, w) is the next frond to be processed, then each cur-
rently unlabeled vertex except w on the tree path from w to u has HIGHPT w
and may be so labeled. Step b is:

b: comment calculate HIGHPT(v) for every vertex v in G1
begin
for/:= until V do

begin
HIGHPT(i) :-- 0;
set BUCKET(i) equal to the empty list;

end;
1: for each frond (u, w) in G do add (u, w) to BUCKET(w);
m" for w "= V step until do

while BUCKET(w) is not empty do
begin

let (u, w) BUCKET(W);
delete (u, w) from BUCKET(W);

n: for each vertex v - w on the tree path from w to u satisfying
HIGHPT(v) 0 do HIGHPT(v) w;

end;

76 ROBERT TARJAN

comment" after completion of Step m, all HIGHPT values will be
correctly defined;
end;

Consider this calculation. Step is a radix sort which orders the fronds on
the NUMBER of their second vertex. For any vertex v, if there is a frond (u, w)
with w 4: v and w- v u, then HIGHPT(v)4:0 when Step m is finished;
otherwise HIGHPT(v)= 0 when Step m is finished. If HIGHPT(v)4:0 when
Step m is finished, then HIGHPT(v) is equal to the highest numbered vertex
w 4: v such that there is a frond (u, w) with w v - u. It follows that Step m cal-
culates HIGHPT values correctly.

For the algorithm to work efficiently, Step m must not reexamine vertices
whose HIGHPT values have already been calculated. To take care of this prob-
lem, we use a fast method for computing unions of disjoint sets [11], [12], [13].
We shall have sets numbered to V1. If v 4:1 is a vertex, then v will appear in the
set whose number is the highest numbered unlabeled proper ancestor of v. Since
vertex never gets labeled, each vertex except always appears in a set. Initially,
if (v, w) is a tree arc, then w appears in the set named v.

To process frond (u, w), we find the set U containing u, the set u2 containing
u l, and so on, until we reach a set u, such that u,- w. The vertices u l, u2, "’,

u,_ 1, and possibly u, are the unlabeled vertices on the tree path from w to u. We
label them with HIGHPT value w, and then we compute the union of sets

u2, "", u,_ 1, u, (and possibly u) and number the union u,. Step m becomes"

m" begin
for/’= until V1 do SET(i)’= the empty set;
for each tree arc (v, w) do SET(v) "= SET(v) U {v}
for w "= V1 step until do

while BUCKET(w) is not empty do
begin

let (u, w) BUCKET(w)"
delete (u, w) from BUCKET(w);
n" while -- (u w) do begin

x "= FIND(u);
if HIGHPT(u) 0 then

begin
SET(x)’= SET(x) U SET(u);
HIGHPT(u) w;

end;
U X,

ed;
end;

All the set unions in Step m are unions of disjoint sets. The operation FIND(x)
computes the number of the set containing x as an element. Implementation and
timing of the union and find operations are discussed in Appendix B. It is not
hard to prove by induction on the number of vertices labeled that at all times

FINDING DOMINATORS IN DIRECTED GRAPHS 77

during execution of Step m, vertex w appears in set v if and only if v is the highest
numbered unlabeled proper ancestor of w. It follows that Step m calculates
HIGHPT values correctly.

IEMMA 21. Step b (calculating HIGHPT values) requires O(V log V + E) time.

Proof. Initialization requires O(V) time. Step requires O(E) time. Step m
requires O(V + E) time for removing fronds from buckets. Step n requires O(V + E)
time exclusive of set unions and finds. There is one find for each frond plus at
most one find for each vertex, giving O(V + E) finds. There is one set union for
each labeled vertex and one set union for each tree arc when the sets are initialized,
giving in all O(V) set unions. Using the implementation for finds and unions dis-
cussed in Appendix B, the set operations require O(V log V + E) time. Combining
these facts gives the lemma.

The set unions and finds done in Step b actually require less time than the
bound in Lemma 21 indicates, but Step b is not the slowest part of the dominators
algorithm, and the bound in Lemma 21 is good enough.

6. Calculating semidominators. In this section, we implement Steps g and h,
the conversion of cross-links to reverse fronds and the calculation of semi-
dominators. A straightforward algorithm for these steps requires O(V2) time, but
we can do better by using good data structures. First, consider the conversion of
a cross-link to a reverse frond. Suppose we are processing vertex v, and we want
to convert cross-link (u, v) to a reverse frond. For any w > v, either SDOM(v, w)

v or SDOM(v, w) IDOM(w), by Lemma 16. We can apply Lemma 15 to
discover whether SDOM(v, w)= IDOM(w); if SDOM(v, w) is not a proper an-
cestor of v, we will know the value of IDOM(w).

The semidominator calculations build the dominator tree from the leaves
downward; at any given time, the part of the dominator tree which we know will
consist of several vertices and all their descendants in the dominator tree. Let this
set of subtrees be F. We shall use sets numbered through V1 (called ISET’s) to
contain information about F. If v is a vertex, v will be in the ISET whose number
is the root of the subtree in F which contains v. If v is in no subtree in F, then v
will be in ISET(v). Initially each ISET(v) contains exactly one element, v itself.
To update the ISET’s, each time we calculate IDOM(v) for a new vertex, we let
ISET(IDOM(v)) ISET(v) [2 ISET(IDOM(v)). We can use the set union algo-
rithm in Appendix B to keep track of the sets.

To convert cross-link (u, v) to a reverse frond, we find the set x which contains
u. Then (u, v) may be converted to (x, v) by repeated cross-link replacement.
(None of the elements of the set x ISET(u) can be an ancestor of v, since if
y- v, then y < v and y ISET(y) when v is being processed.) Either (x, v) is a
reverse frond or SDOM(v, x) v, and applying one more cross-link replacement
gives a reverse frond. This is the crux of our implementation of Step g; now we
must see how to keep track of semidominator values.

For fixed i, we do not want to calculate SDOM(i- 1, v) for all vertices v,
since for most vertices SDOM(i 1, v) SDOM(i, v). We only want to calculate
semidominators which change when changes. We use a set of priority queues to
keep track of the semidominators. A priority queue contains a set of items, each
with an attached numeric priority. We need to be able to add an item with any

78 ROBERT TARJAN

priority to a queue and to remove the item with highest priority from a queue. (If
two or more items have the same highest priority, we do not care which is re-
moved first.) We also need to be able to combine two priority queues to give a
large queue containing all items from both old queues.

Several good methods for implementing priority queues are known 14],
15]. They all use some sort of tree representation, and have a time bound of
O(n log n) to perform n operations of the three types discussed above, starting
with initially empty queues. We shall not discuss here how to implement priority
queues;let us assume that we have some good implementation on hand.

To implement the semidominator calculations using priority queues, we set
up a queue for each vertex v. Queue v will contain items, each of which is a set of
descendants of v. (These sets we call QSET’s.) All vertices w in a QSET will have
the same value of SDOM(v, w), and this value will be the priority of the QSET
in the queue. Only vertices whose IDOM values are not known are included in
QSET’s; thus if SDOM(v, w) is the priority of some QSET on the queue for v,
SDOM(v, w) v.

To update the semidominators when processing vertex v, let (LOWPT(v), v)
be the reverse frond (if any) entering vertex v. All sons of v have already been
processed. First we construct a priority queue for v by combining the queues of
the sons of v. Each QSET in the new queue has a priority corresponding to some
ancestor of v. We remove each QSET having priority v (the highest possible
priority). Each vertex in a removed QSET has. IDOM value equal to v, by Lemma
15. We label these vertices with IDOM values and update the ISET’s as described
above. If v has no reverse frond entering it, we add to the queue a new QSET {v}
with priority equal to the father of v. If v has a reverse frond entering it, we remove
each QSET with priority equal to or greater than LOWPT(v), we compute the
union of all these QSET’s, we add v as an element to this QSET, and we add the
new QSET to the queue with priority LOWPT(v). This implements Lemma 19
for updating the semidominator calculations.

We handle the QSET unions using the set union algorithm described in
Appendix B. Each vertex appears in at most one QSET which is on the priority
queue of some vertex. For convenience, we assign each QSET a name consisting of
its priority and some number distinguishing QSET’s with the same priority. We
now can finish the implementation of repeated cross-link replacement. Once a
cross-link (u, v) has been converted into an edge (x, v) with IDOM(x) undefined,
if (x, v) is not a reverse frond, then x must be in some QSET. Let y be the priority
of this QSET in its queue. Then (y, v) is a reverse frond and may be substituted
for (x, v).

Steps g and h are given below in At,c,oL-like notation.

comment we need some initialization to set up the ISET’s; for :-- until V1 do
ISET(i) := {i};
g: begin comment convert (u, i) into a reverse frond by repeated cross-link re-

placement;
x := IFIND(u);
if x then replace (u, i) by (x, i);
else

FINDING DOMINATORS IN DIRECTED GRAPHS 79

begin
(y, v) := QFIND(x);
replace (u, i) by (y, i);

end;

We shall assume for convenience in Step h that the priority queue operations
are implemented so that if we try to remove a set from an empty queue, we get
an empty set called QSET(0, 0), and if we try to add QSET(0, 0) to a queue,
nothing gets added to the queue.
h’ begin comment calculate SDOM(i- 1, v) for all v such that SDOM(i- 1, v)- SDOM(i, v). The semidominator of a vertex v is the priority of the

QSET containing it, if v > and IDOM(v) is yet unknown;
QUEUE(i) "= the empty queue;
for w a son of do
QUEUE(i) QUEUE(i) U QUEUE(w);

remove QSET(z,j) with highest priority z from QUEUE(i);
while z do

begin
for each element e 6 QSET(z,j)do

begin
IDOM(e) i;
ISET(i) "= ISET(e) U ISET(i)

end;
remove QSET(z,j) with highest priority z from QUEUE(i)"

end
add QSET(z, j) to QUEUE(i);
if LOWPT(i) >_ then

begin comment (LOWPT(i),i) is the reverse frond (if any) entering
vertex i;
QSET (FATHER(i), i)’= {i};
add QSET (FATHER(i), i) to QUEUE(i);

end
else

begin
QSET (LOWPT(i), i) {i};
remove QSET(z,j) with highest priority z from QUEUE(i);
while LOWPT(i) =< z do

begin
QSET(LOWPT(i), i) "= QSET(z,j) U QSET(LOWPT(i), i);
remove QSET(z,j) with highest priority z from QUEUE(i)

end;
add QSET(z,j) to QUEUE(i);
add QSET(LOWPT(i), i)to QUEUE(i);

end;
end;

Step h is a straightforward implementation using the preceding ideas, and
it is easy to prove the following hypothesis by induction on the number of times

80 ROBERT TARJAN

that Step h is executed: if v e ISET(x), x is the highest numbered ancestor of v in
the dominator tree such that IDOM(i) has not yet been calculated; if v is in
QSET(z,j) and QSET(z,j) is in QUEUE(i), then SDOM(i, v) z iflDOM(v) -= 0,
then IDOM(v) has the correct value. It follows that Steps g and h correctly cal-
culate dominators.

LEMMA 22. If the dominators algorithm uses Steps g and h as implemented
above, then the total running time of Steps g and h is O(Vlog V + E).

Proof. Ignoring set and queue operations, the total running time of Steps g
and h is O(V + E). O(V) unions of ISET’s and O(E) finds on ISET’s will be carried
out in Steps g and h. O(V) unions of QSET’s and O(V) finds on QSET’s will be
carried out. The total cost of all the set operations is thus O(Vlog V + E) by the
timing result in Appendix B. O(V) unions of QUEUE’s, O(V) additions to
QUEUE’s, and O(V) deletions from QUEUE’s are carried out. By Crane’s results
[14], the priority queue operations may be carried out in O(V log V) time. Com-
bining these results gives the lemma.

7. The complete dominators algorithm. This section contains the entire
dominators algorithm in ALGoL-like notation. Several of the steps which have
been discussed separately are combined; for instance, the initial depth-first search
can be used to sort the fronds by the value of their second vertex and to begin
the process of reverse frond deletion. The search can also be used to calculate the
father of each vertex in the generated tree; this information is needed to initialize
the semidominator calculations. The set and priority queue operations are not
implemented here, but are assumed to be primitive operations. (The time required
by these operations is included in the time bound for the entire algorithm, how-
ever.) Here is the dominators algorithm:
procedure DOMINATORS(G, s);

begin comment we assume that the graph G is represented as a set of adjacency
lists A(v);

procedure SEARCH(v);
begin comment this is the modified version of DFSEARCH used to

initially explore the graph. It numbers the vertices, classifies the
edges, deletes all but one reverse frond (LOWPT(v), v) entering each
vertex v, sorts the fronds using a radix sort, and computes the number
of descendants and the father of each vertex in the generated tree.
Vertices not reached during the search have no dominators. Variable
m denotes the last NUMBER assigned to any vertex. Variable n
denotes the last SNUMBER assigned to any vertex;

m:= NUMBER(v):= m + 1;
ND(v) := 1;
for w A(v) do

if NUMBER(w) 0 then
begin
FATHER(w) := v;
SEARCH(w);
ND(v) := ND(v) + ND(w);

end

FINDING DOMINATORS IN DIRECTED GRAPHS 81

else if SNUMBER(w) 0 then
begin comment vertex w is stacked and (v, w) is a frond;

1: add (v, w) to BUCKET(w);
end

else if NUMBER(v) < NUMBER(w)then
begin (v w) is a reverse frond;

d: if NUMBER(v) <"LOWPT(w) then LOWPT(w):= NUM-
BER(v);

end
else add (v, w) to list of cross-links entering w;

n := SNUMBER() := n- l;
comment is now unstacked

end;
integer m, n;
a: comment to classify the edges we initialize and call SEARCH;
m:=0;
n:=V+l;
for each vertex v do

begin
NUMBER(v) := SNUMBER(v):= 0;
BUCKET(v) := the empty list;
IDOM(v) 0;
LOWPT(v) V;

end;
SEARCH(s);
Vl :--m

comment henceforth for convenience we assume that the program refers
to each vertex by its number;

modify all data structures so that vertices are named by their number;

B: comment calculate HIGHPT(v) for every reachable vertex v;

for/’= until V1 do
begin
HIGHPT(i) := 0;
SET(i):= the empty set;

end;
for/:= 2 until V do
SET(FATHER(i)) := SET(FATHER(i)) U SET(i);

re’for w’= VI step- until do
while BUCKET(w)is not empty do

begin
let (u, w) BUCKET(w);
delete (u, w) from BUCKET(w);
n while (u w) do begin

x := FIND(u);
if HIGHPT(u) 0 then

82 ROBERT TARJAN

begin
SET(x)’= SET(x) U SET(u);
HIGHPT(u) "= w;

end;
/2 X,

end;
end;

c" comment calculate semidominators
for/’= until V do ISET(i) {i};
for V step until do

f" begin
for each cross-link (u, i)do

g’ begin comment convert (u, i) to a reverse frond by repeated
cross-link replacement;

x "= IFIND(u);
if (x & i) then replace (u, i) by (x, i)
else begin

(x, v) "= QFIND(x);
replace (u, i) by (x, i);

end;
comment if two reverse fronds now enter then delete one"

if x - LOWPT(i) then LOWPT(i) "= x;
end;

comment if a frond leaves then delete it and add a reverse frond if
necessary;

if HIGHPT(v) < v and (LOWPT(v) < v) and
(LOWPT(LOWPT(v)) > HIGHPT(v)) then
LOWPT(LOWPT(v)) "= HIGHPT(v);

h" comment calculate SDOM(i 1, v) for all v such that SDOM(i 1,
v) 4= SDOM(i, v). The semidominator of a vertex v is the priority
of the QSET containing it, if v __> and IDOM(v) is not yet known;

QUEUE(i) the empty queue;
for w a son of do
QUEUE(i) "= QUEUE(i) lO QUEUE(w);

remove QSET(z,j) with highest priority z from QUEUE(i);
while z do

begin
for each element v QSET(z,j) do

begin
IDOM(v) i;
ISET(i) "= ISET(i)U ISET(v);

end;
remove QSET(z,j) with highest priority z from QUEUE(i);

end;
add QSET(z, j) to QUEUE(i);
if LOWPT(i) >_ then

FINDING DOMINATORS IN DIRECTED GRAPHS 83

end;
end;

begin
QSET(FATHER(i), i) := {i}:
add QSET(FATHER(i), i)to QUEUE(i);

end
else

begin
QSET(LOWPT(i), i) "=
remove QSET(z,j) with highest priority z from QUEUE(i);
while LOWPT(i) _<_ z do

begin
QSET(LOWPT(i), i) := QSET(LOWPT(i), i) QSET(z,j)

remove QSET(z,j) with highest priority z from QUEUE(i):
end:

add QSET(z,j)to QUEUE(i)
add QSET(LOWPT(i), i)to QUEUE(i);

end;

This gives a complete algorithm for calculating dominators. Figure 5 shows the
graph which results when all the dominator-preserving transformations are
applied to the graph in Fig. 4. It is easy to verify that the algorithm has an O(V + E)
space bound. Combining the timing results in 2, 4, 5 and 6, we see that the
dominators algorithm has an O(Vlog V + E) time bound if the set and priority
queue operations are implemented efficiently. The slowest parts of the algorithm
are those which require priority queues; the set union operations run faster than
the queue operations. If we could somehow handle the semidominator cal-
culations using set unions (as we handled the HIGHPT calculations), then we
could construct an even faster algorithm. The next section outlines how this
may be done for a special case.

8. Toward a faster algorithm. The slow part of the dominators algorithm is
the use of priority queues. If we could somehow use sets in place of priority
queues (as we could for the HIGHPT calculations), then we could construct a
faster dominators algorithm. This section outlines the construction of such an
algorithm for the case when G has no cross-links.

Suppose G is a graph which has no cross-links when explored from vertex s

using depth-first search. To find dominators in G, we classify the edges and
number the vertices of G as before. Then we calculate HIGHPT values using the
method described in 4. Next, we apply reverse frond deletion and frond deletion
repeatedly, until we have converted G into a graph with no fronds, no cross-
links, and at most one reverse frond entering each vertex. Now we don’t have to
bother with calculating semidominators; we can calculate the dominators
directly.

To calculate the dominators, we sort the remaining reverse fronds (u, v) of
G so that if(u2,/)2) follows (ul,/)1), then/’/2 > b/1 or U2 U and/)2 < /)1" This may

84 ROBERT TARJAN

(5,1)

/
/ (4,1)

/
/

\ \
\ \

\ (2,1)

(10,1) (12,11)

/

(9,1)

(8,1)

/
/

(11,1)

(1

FIe;. 5. The graph in Fig. 4 after all dominator-preserving transformations have been applied. The

resultant graph contains only tree arcs and reverse fronds. Vertex numbers and immediate dominators

are in parentheses.

be done using a two-pass radix sort with V buckets, similar to the sorting for the
calculation of HIGHPT values. We then process the reverse fronds in sorted
order, using the following lemma.

LEMMA 23. Let G be a graph such that each vertex is reachable from s, each
vertex has at most one reverse frond entering it, and G contains no cross-links or

fronds. Suppose v 4: 1. If v has no reverse frond entering it, IDOM(v) is the father
of v in the spanning tree of G. If v has a reverse frond (u, v) entering it and no reverse

frond (x, w) satisfies x - u w - v and x < u < w < v, then IDOM(v)=u.
Otherwise let (x, w) be the reverse frond with smallest x (largest w) satisfying
x - u- w v and x < u < w < v. Then IDOM(v) IDOM(w).

Proof. If v has no reverse frond entering it, every path to v must pass through
the father of v, and IDOM(v) is the father of v. Suppose (u, v) enters v but no re-
verse frond (x, w) satisfies x- u w v and x < u < w < v. Suppose path p
leads from s to v but doesn’t contain u. Let (x, w) be the first edge on p with w > u.

(x, w) must be a reverse frond with x - u - w v and x < u < w < v. But this
is a contradiction, so u dominates v. Since (u, v) is an edge, IDOM(v) u.

If some reverse frond (x, w) satisfies x u w v and x < u < w < v, let
(x, w) be one with smallest x (largest w). It is clear that any vertex which does not
dominate w cannot dominate v. Thus every vertex which dominates v must also
dominate w. Now we need only show that IDOM(w) dominates v.

Suppose, to the contrary, that p is a path from s to v which doesn’t contain
IDOM(w). Let (i,j) be the first edge on this path satisfying j >= x(j >= u). Then
IDOM(w) cannot dominate w because j <= u, x j u(j <= w, u j w), and

FINDING DOMINATORS IN DIRECTED GRAPHS 85

we may form a path from s to w which doesn’t contain IDOM(w). This con-
tradiction gives the rest of the lemma.

To calculate dominators, we start with one set numbered 0 containing all
the vertices. Then we process the reverse fronds in the order described above. At
any given time, a vertex v will be in a set labeled x if x is the largest vertex such
that x- v and a reverse frond (u, x) has been processed. To process a reverse
frond (u, v), we locate u and v in sets. If they are in the same set, IDOM(v) u
by Lemma 23. If they are in different sets, IDOM(v)= IDOM(FIND(v)) by
Lemma 23. It happens that in this case IDOM(FIND(v)) will already have been
computed, but even if this were not true we could fill in the value of IDOM(v)
later, once we knew the value of IDOM(FIND(v)). In any case, we split the set
containing v into two parts" a set containing descendants of v, having label v,
and a set containing nondescendants of v, having the same label as the old set
containing v. This algorithm computes dominators, if we can implement the
set-splitting operation.

Actually, we don’t have to split sets; we can run this algorithm backwards,
and turn the splits into union operations. Then we can use the algorithm de-
scribed in Appendix B. The correct labels for all the resultant sets and the IDOM
values must be filled in after the set union operations are carried out, but this is
no great problem. The resultant dominators algorithm has a time bound of
O(V + E) not counting set unions and finds. There are O(V) unions in the HIGHPT
and dominator calculations and O(V + E) finds. If E > V log V, we get the same
overall bound as the algorithm in 7" O(E). If E is substantially smaller than
Vlog V, we get a better bound than that for the algorithm in 7, namely, O((V + E)
log*(V+ E)), where log*x= min{ilogi(x)< 1} (see [12], [13].) It seems

possible that this faster algorithm may be generalized to handle arbitrary graphs.

9. Conclusions. This paper has presented an algorithm for finding domi-
nators in directed graphs. The algorithm illustrates the use of depth-first search
for revealing the connectivity structure of a graph and the use of sophisticated
data structures in building efficient graph algorithms. The algorithm requires
O(V + E) space and O(Vlog V + E) time to find dominators in a graph with V
vertices and E edges. The time bound compares favorably with the O(V(V + E))
time bound of previously known algorithms such as Aho and Ullman’s Ill and
Purdom and Moore’s [3] for finding dominators in arbitrary graphs, and with
the O(E log E) time bound of Aho, Hopcroft and Ullman’s algorithm for finding
dominators in reducible graphs [6]. If E >= V log V, then the time bound is O(E),
and the new algorithm is optimal to within a constant factor, since every edge
must be examined to determine dominators. Although the algorithm is based on
some delicate graphical transformations, it is easy to program.

Still open is the question of whether a faster algorithm exists if E < Vlog V.
Section 8 gives a faster algorithm for graphs which have no cross-links when
they are explored using depth-first search. Many, but not all program flow graphs
have this special form; in particular, the if... then else construction produces
a cross-link in the resultant flow graph. By adding vertices, any program flow
graph may be converted into a computationally equivalent program flow graph
which has no cross-links. However, the number of vertices in the graph may

86 ROBERT TARJAN

grow enormously. The slower but more general algorithm thus seems more useful
than the faster algorithm. However, it may be that the algorithm in 8 can be
extended to reducible graphs or even to arbitrary graphs.

Appendix A. Basic definitions. A directed graph G (U, g) is an ordered
pair consisting of a set of vertices and a set of edges . Each edge is an ordered
pair (v, w) of distinct vertices. We say edge (v, w) leaves v and enters w. A graph
contains no loops (edges of the form (v, v)) and no multiple edges, although the
algorithms presented in this paper may be easily modified to handle graphs with
loops and multiple edges. A graph G1 (,gl) is a subgraph of a graph
G2 (, g2)if 1 - 2 and g

_
g2.

If G is a graph, a path p:v w is a sequence of vertices and edges leading
from vertex v to vertex w. A vertex w is reachable from vertex v if there is a path
from v to w. A path is simple if all its edges are distinct. A path p:v = v is called a
closed path. A closed path may contain no edges. A closed path p:v v is a
cycle if all its edges are distinct and the only vertex to occur twice is v, which
occurs exactly twice. A cycle contains at least two edges. Two cycles which are
cyclic permutations of each other are considered to be the same cycle. A directed
graph is acyclic if it contains no cycles.

A (directed, rooted) tree T is a graph with one distinguished vertex called the
root r such that every vertex in T is reachable from r, no edges enter r, and exactly
one edge enters every other vertex in T. A tree vertex with no exiting edges is
called a leaf. The relation "(v, w) is an edge in T" is denoted by v w. The re-
lation "there is a path from v to w in T" is denoted by v w. If v w, v is the
father of w and w is a son of v. If v w, v is an ancestor of w and w is a descendant
of v. Every vertex is an ancestor and a descendant of itself. If v - w and v 4: w,
v is a proper ancestor of w and w is a proper descendant of v. If T is a tree and is
a subgraph of tree T2, then T is a subtree of T2. If Tis a tree which is a subgraph
of a directed graph G and T contains all the vertices of G, then T is a spanning
tree of G. References on directed graphs include Busacker and Saaty [18], Harary,
Norman and Cartwright [19], and Ore [20].

Iff and g are functions of x, we say g(x) is O(f(x)) if there are constants k
and k2 such that Ig(x)l _-< klf(x)l / k2 for all x.

Appendix B. A good set union algorithm. Suppose we are given a collection of
disjoint sets. We want to carry out operations of two types on the sets: FIND(x),
which computes the name of the set containing x as an element, and UNION(A,
B, C), which computes the union of sets A and B and names the new set C. Initially
we have n distinct elements, each in a singleton set. We then carry out n-
unions and m intermixed finds. We desire a good method for implementing these
operations.

A very simple algorithm will solve the problem. Each set is represented as a
tree. Each tree vertex represents an element in the set, and the root of the tree
represents the entire set as well as some element in the set. Each tree vertex is
represented in a computer by a cell containing either two or three items. A cell
representing a nonroot vertex contains the element corresponding to the vertex
and a pointer to the cell for the father of the vertex in the tree. A cell corresponding

FINDING DOMINATORS IN DIRECTED GRAPHS

to a root contains the element corresponding to the root, the name of the set
corresponding to the tree with that root and the number of vertices in the set.

To carry out FIND(x), we locate the cell containing element x and follow
pointers to the cell for the root of the corresponding tree. This cell contains the
name of the set. In addition we collapse the tree by changing the father of each
vertex reached on the way to the root. The root itself becomes the father of each
of these vertices. This collapsing process saves time in later finds. To carry out
UNION(A, B, C), we choose the set with fewer elements, say A. Then we make
the root of A a son of the root of B. The cell corresponding to the root of A be-
comes a nonroot cell pointing to the cell for the root of B. The root cell of B is
changed to contain the name C and the sum of the number of elements in A and B.

Although this set union algorithm is very simple, it is very hard to analyze
I11], [12], 13]. Hopcroft and Ullman [12] have studied the algorithm and shown
that its running time is O((n + m) log* (n + m)), where log* x rain {i]log x =< }.
Tarjan [13] has derived the same upper bound on the running time using a different
method and has also shown that the algorithm does not have a linear upper bound
on its running time. The exact running time of the algorithm is still unknown.
However, for our purposes, a loose upper bound is all that we need. The bound
below is generally known but apparently unpublished.

It is useful to think about the set union algorithm in the following way:
suppose we perform all n- unions first. Then we have a single tree with n
vertices. Each of the original finds is now a "partial" find in the new tree: to
carry out FIND(x), we follow fathers from x to the closest ancestor of x cor-
responding to a union which appears before FIND(x) in the original sequence
of operations. In this interpretation of the problem, we are interested in bounding
the total length of m partial finds performed on a tree generated by n- set
unions. (The total time required for the set unions is O(n); the time for a find is
proportional to its length.)

Let T be a tree containing n vertices numbered through n which has been
constructed using n set unions. Let di be the number of descendants of vertex i.
Let C(T), the cost of tree T, be defined by

C(T)= di.
i=1

Let C(n) be the maximum cost of a tree with n vertices constructed by applying
set unions. Then we have the following.

LEMMA 28. C(n) <= n log 2n.
Proof. We prove the lemma by induction on n. C(1)= 1. log 2. Sup-

pose the lemma is true for n < k. Let n k. Let T be a tree such that C(T) C(n)
and T is formed by taking the union of trees T1 with a vertices and T2 with b
vertices, a =< b, a + b n. Then"

c(n) C(T) C(T,) + C(T) + n b

=< a log2a+blog2b +a
<_ a(log2n 1) + b(log2n) + a

<_ n log 2n.

88 ROBERT TARJAN

The lemma follows by induction on n.
Now suppose we apply a partial find of length k to a tree T. Assume without

loss of generality that the find starts at vertex and causes vertices 1, 2, ..., k
to become sons of vertex k. Let T’ be the tree after this find is performed, and
let d’i be the number of descendants of vertex in T’. Then d’l d l, d’i di d_
for 2 =< < k 1, and d, dk. Since d >= d_ + >= >= 1, it follows that
C(T’) _< C(T) k 2, and we have the following result.

LEMMA 29. If m partial finds are performed on a tree with n vertices formed
with n unions, the total length of all the finds is O(n log n + m).

Proof. Let k, 1, .-., m, be the length of the ith find. Since every tree has
positive cost and any find of length k decreases the cost of the corresponding
tree by at least k 2, we have

It follows that

nlog2n- (ki-2)>O.
i=1

ki<2m+nlog2n.
i=1

Lemma 29 implies that n- unions and m finds require O(n log n + m)
time.

REFERENCES

I1] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation, and Compiling, Vol. H." Com-
piling, Prentice-Hall, Englewood Cliffs, N.J., 1972.

[2] E. S. LORRy AND C. W. MEDOCK, Object code optimization, Comm. ACM, 12 (1969), pp. 13-22.
E3] P. W. PURDOM aND E. F. Moor, Algorithm 430. Immediate predominators in a directed graph,

Ibid., 15 (1972), pp. 777-778.
[4] M. SrazFzR, A mathematical theory ofglobalflow analysis, unpublished notes, System Develop-

ment Corp., Santa Monica, Calif., 1971.
5] J. R. Bt AND N. E. Aunt., An algorithm forfinding immediate predominators in optimizing com-

pilers, unpublished, Digital Equipment Corp., Maynard, Mass., January, 1972.
63 A. V. AHO, J. E. HOeCrmFT AND J. D. UI.MaN, On finding the least common ancestors in trees,

submitted to the 1973 ACM Symposium on Theory of Computing (Austin, Texas, 1973).
7] M. S. HeCH’r aND J. D. Ur.t.MaN, Flow graph reducibility, this Journal, (1972), pp. 188-202.
8] J. E. Hor,cov3" AND J. D. UItMaN, An n log n algorithmfor detecting reducible graphs, Proc. 6th

Annual Princeton Conference of Information Sciences and Systems, 1972, pp. 119-122.
[9] F. E. AIIEN, Control Flow Analysis, SIGPLAN Notices, vol. 5, no. 7, July 1970, pp. 1-19.

[10] R. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-159.
[11] M. J. Flscre, Efficiency of equivalence algorithms, Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 153-168.
[12] J. E. Hoecrtov3" AND J. D. UI.tMaN, Set-merging algorithms, this Journal, 2 (1973), pp. 294-303.
13] R. TARJAN, On the efficiency of a good but not linear set union algorithm, Tech. Rep. 72-148,

Computer Science Dept., Cornell Univ., Ithaca, N.Y., 1972.
14] C. R. CIaNz, Linear lists and priority queues as balanced binary trees, STAN-CS-72-259, Com-

puter Science Dept., Stanford Univ., Stanford, Calif., 1972.
[15] J. E. Holcuov’r, private communication.

FINDING DOMINATORS IN DIRECTED GRAPHS 89

[16] D. KNUTH, The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, Mass., pp.
258-265.

17] R. TARJAN, An O(V2) algorithmforfinding dominators in directedgraphs, unpublished manuscript,
Cornell Univ., Ithaca, N.Y., 1972.

18] R. G. BUSACKER AND T. L. SAATY, Finite Graphs and Networks." An Introduction with Applications,
McGraw-Hill, New York, 1965.

19] F. HARARY, R. Z. NORMAN AND D. CARTWRIGHT, Structural Models, John Wiley, New York, 1965.
[20] O. ORE, Theory of Graphs, American Mathematical Society, Providence, R.I., 1962.
[21] C. P. EARNEST, K. G. BALKE AND J. ANDERSON, Analysis ofgraphs by ordering ofnodes, J. Assoc.

Comput. Mach., 19 (1972), pp. 23-42.

SIAM J. CoM,tyr.

Vol. 3, No. 1, March 1974

FIRST ORDER GRAPH GRAMMARS*

CURTIS R. COOK?

Abstract. In this paper we consider first order context-flee, linear, and regular graph grammars
and obtain many results similar to those for the corresponding string grammars. We obtain normal
forms for context-flee and regular graph grammars, simplification lemmas, and algorithms for mem-
bership, emptiness, finiteness and infiniteness. We show the relation between regular graph languages
and regular sets and show that the set of graphs resembling the nonregular set {a"b"ln > 1} is not
generated by a first order context-flee graph grammar. We also give several graphical character-
izations of each of the three types of graph grammars.

Key words, graphs, graph grammars, block, cutpoint, cutpoint graphs

Introduction. Graph grammars have been the subject of much recent research
because of their syntactic pattern recognition and picture processing applications.
The main difference between graph and string grammars is that a symbol may
appear in a string with a symbol to its left or right, while a symbol in a graph
may be joined to an arbitrary number of other symbols. Some of the different
models of graph grammars are web grammars [1], [5], [7], plex grammars [2],
graph grammars [8, and mth order context-flee graph grammars [6].

The main differences between the various models are (i) the mth order con-
text-flee graph grammar rewriting rules do not include a specification of the
embedding of the rewritten graph in the host graph; (ii) variables in the mth
order context-flee and plex grammars are allowed to be graph structures; in the
other models variables are either points or lines; (iii) web grammar terminals are
points;in the other models terminals are points, lines, and higher order graph
structures.

In this paper we investigate first order context-flee, linear, and regular
graph grammars. The variables and terminals in our model are points, and the
productions do not include an embedding specification. Our model is a special
case of the first order case of mth order context-flee graph grammars and turns
out to be identical to the normal context-flee web grammars as defined in [1].
It is interesting to note that in all of the other graph grammar models there is no
counterpart to regular string grammars.

We give several graphical characterizations of each of the three types of
grammars. We obtain many results similar to those for string grammars: normal
forms for context-flee and regular graph grammars, simplification lemmas, and
algorithms for membership, emptiness, finiteness and infiniteness. The proofs are
almost identical to the string grammar proofs. We show the relation between
regular graph languages and regular sets. We also show that a set of graphs
resembling the nonregular set {a"b"ln > 1} is not generated by a first order
context-flee graph grammar.

1. Definitions and examples. It is assumed that the reader is familiar with the
standard notation and results of formal language and automata theory 4].

* Received by the editors May 21, 1973.
f Computer Science Department, Oregon State University, Corvallis, Oregon 97331.

90

FIRST ORDER GRAPH GRAMMARS 91

In this paper all graphs are unordered, connected, and do not contain
multiple lines or loops.

DEFINITION. A first order context free graph grammar (1-CFGG) G (N, T,
P, S), where

N is a finite set of variables (point variables),
T is a finite set of terminals (T is a single element for unlabeled graphs),
S is in N, and
P is a finite set of productions or rewriting rules of the form

A - Z, where A
is in N, is a graph whose points are labeled from N T, exactly one point
in o is the image of A, and is connected to the rest of the graph through the
image of A.

Let , , and L(G) be defined in the usual way. Thus L(G) is a set of undirected
graphs whose points are labeled with symbols from T.

Pavlidis 6] defined the mth order context-free and linear graph grammars
and gave several topological characterizations of second order context-free and
linear graph grammars. His variables are mth order structures, subgraphs which
are connected to the rest of the graph by rn points. The variables in our grammars
are the special case of his first order or node structures where the node structure
is just a point. His terminals are lines and points, while ours are simply points.

Our definition turns out to be identical to the normal context-free web
grammars as defined in [1]. In the embedding specification in [1], points adjacent
to the rewritten point are adjacent to the image of the point. A web grammar is
normal if, in each production, the point rewritten has exactly one image in the
right side. The main results in 1] concerned the hierarchy of classes of webs
generated by normal and nonnormal grammars.

DEFINITION. A first order linear graph grammar (1-LGG) is a 1-CFGG in
which the right side of each production contains at most one variable.

Before we define first order regular graph grammars, we need several graph
theory definitions 3-]. The trivial graph is the graph consisting of a single point.
A cutpoint of a graph is a point whose removal (includes removing lines incident
with point) disconnects the graph. A graph is separable if it contains a cutpoint.
A nonseparable graph is nontrivial and contains no cutpoint. A block of a graph
is a maximal nonseparable subgraph.

DEFINITION. A first order regular graph grammar (1-RGG) is a 1-LGG in
which the right side of each production is either a terminal point or a block
containing at most one variable.

Let 1-CFGL, 1-LGL and 1-RGL denote the set of graphs generated by
1-CFGG, 1-LGG and 1-RGG, respectively.

The following examples illustrate the definitions. The underlined symbol on
the right side of a production is the image of the variable on the left. Upper case
letters denote variables and lower case denote terminals.

Example 1. 1-CFGG which generates all trees.

A A A

A (1

92 CURTIS R. COOK

Example 2.

1-RGG which generates

S

b b b

b

b

2. First order context-free graph grammars. In this section we derive many
results similar to those for context-flee string grammars. We describe several
simplifications and obtain a normal form very similar to the Chomsky normal
form. We show that there exist algorithms for determining whether the language
generated by a 1-CFGG is empty, finite, or infinite. We give several graphical
characterizations of 1-CFGL’s. Finally, we show that a set of graphs resembling
the nonregular set {a"b"ln >= 1} is not generated by a 1-CFGG.

First we give several simplification lemmas whose proofs are identical to the
string grammar proofs [4]. Two 1-CFGG’s are equivalent if they generate the
same set of graphs.

LEMMA 1. Given a 1-CFGG G, we can find an equivalent 1-CFGG G’ in which
the start symbol ofG’ does not appearon the right side ofa production.

LFMMA 2. Given a 1-CFGG G, we can.find an equivalent 1-CFGG with no
productions of the form a. ,, where A and B are both variables.

A variable in G is useless if it never appears in the derivation of some graph
in L(G).

LEMMA 3. Given a I-CFGG G, we can find an equivalent 1-CFGG G’ with no
useless variables.

We include the proof of the next lemma because it yields as a corollary an
algorithm for determining whether the language is empty.

LFMMA 4. Given a 1-CFGG G, we can find an equivalent 1-CFGG G’ such
that each variable in G’ generates a terminal graph.

Proof. Let G (N, T, P, S). Let W {A N[.a ---, a in P and is a terminal
graph}, and for j >__ 1, let Wj+I Wj U {A NI’A - in P and is a graph whose
points are labeled from T

Construct the grammar G’-- (N’, T, P’, S), where N’= W, IN] k and P’
consists of those productions .a - a in P for which A N’ and the points of are
labeled from T 13 N’. Then G’ contains no useless variables, and clearly L(G)

L(G’).
It follows immediately from the construction of the W’s that L(G) is empty

if and only if S 6 N’.
LEMMA 5. There is an algorithm for determining if the language generated by

a 1-CFGG is empty.
From now on, we assume that all 1-CFGG’s are simplified, i.e., satisfy

Lemmas 1-4. The graph theory concept of a block plays an important role in
the normal form for 1-CFGG’s.

FIRST ORDER GRAPH GRAMMARS 93

THEOREM 1. Every 1-CFGL L can be generated by a grammar in which all
productions are of the form A. , where is either a terminal point or a block.

Proof. Let G (N, T, P, S) be a 1-CFGG such that L(G) L. If a production
has a single point or a block on the right side, then it is already in an acceptable
form.

Now consider a production A a, where z is a separable graph with cut-
points v 1,..., v and blocks B1, ..., Bk. For each cutpoint vj, let Cj denote the
set of all blocks containing v;. Define the set D {D,,,ID,,, is a nonempty subset
of C, for some n}. Replace A with the set of productions"

1. A fl, where fl denotes the block B with each cutpoint vp of B re-
placed by the variable Cp {B e D.

2. For every Dmn D and Bp Dmn Dmn zp, where zp denotes the block
Bp with each cutpoint Vq, q :/: n, replaced by the variable Cq- {Bp}, and the
image of Din, is the variable Dm, {Bp} if Din, {Bp} :/: and is v, otherwise.

The variable Opq indicates which of the blocks containing cutpoint Vq have
not been generated. This construction guarantees that all of the blocks of z will
be generated. The first production A fl initiates the generation with all cut-
points of B replaced by variables indicating block B has been generated. From
then on, only productions of type 2 are applied with the cutpoints replaced by
variables which indicate the blocks containing that cutpoint which have yet to
be generated. A cutpoint variable rewrites as a v2 only after all blocks containing
it have been generated.

Let N’ and P’ denote the new set of variables and productions, respectively.
Then G’= (N’, T, P’, S) is of the proper form. It should be clear from the con-
struction that L(G) L(G’).

From Theorem 1, we obtain a graph grammar version of the Chomsky
normal form. For each .A , where is a block, replace each terminal in by
a new variable which appears on the right side of no other production. Then
create a new production in which the new variable rewrites as the terminal it
replaced.

THEOREM 2 (Normal form). Any 1-CFGL can be generated by a 1-CFGG in
which all productions are of the form A. , where z is either a terminal point or a
block in which every point is a variable.

Two graphical characterizations follow immediately from the normal form
theorem (k is the maximum number of points in the right side of a production).

THEOREM 3. Let L be a 1-CFGL. Then there exists a number k such that no
graph in L contains a block with more than k points.

Even though Theorem 3 only gives a necessary condition for the character-
ization of 1-CFGL’s, it does provide a simple test for assuring that a set of graphs
is not generated by a 1-CFGG.

COROLLARY 3.1. The.following graphs cannot be generated by a 1-CFGG"
(a) all nonseparable graphs;
(b) all complete graphs (a complete graph has every pair of its points adjacent);
(c) all bigraphs (a bigraph is a graph whose point set can be partitioned into

two sets such that every line joins a point in one set with a point in the other set);
(d) all cycles C, for n >= 3.
Pavlidis [63 characterized 2-CFGL by a k-reduction process which is the

94 CURTIS R. COOK

graph counterpart of string grammar parsing. For 1-CFGL’s define the k-
reduction process as follows.

Step 1. Replace by a single point any subgraphs with no more than k points
which are connected to the rest of the graph by exactly one point.

Step 2. Repeat Step until it is no longer applicable. If the reduced graph
has exactly one point, then the original graph is k-reducible; otherwise it is k-
irreducible.

THEOREM 4. If L is a 1-CFGL, then there exists a number k such that every
member of L is k-reducible.

There are derivation trees for 1-CFGG’s. If . e is a production and
contains the points p a, ..., p, then the corresponding nodes in the derivation
tree are

A

Pl P2 Pn

Note that the points are unordered, so there is no unique derivation tree for a
derivation in a 1-CFGG. The derivation trees are used to show that there exist
algorithms which determine, for any graph H, whether H is generated by the
1-CFGG G and which determine whether a 1-CFGL is finite or infinite. The
proofs are almost identical to the corresponding string grammar proofs [4].

THEOREM 5. Let G be a 1-CFGG. Given a terminal graph H, there is an algo-
rithm for determining whether H is in L(G).

Proof. Let G (N, T, P, S) be a normal form 1-CFGG and let H be a terminal
graph with n points. Since G is in normal form, the right side of each production
is either a block or a single terminal point. Then at most n productions whose
right sides are single terminal points and at most n 1 productions whose right
sides are blocks can be applied in the derivation. Hence the length of the derivation
of H is less than 2n.

Thus the algorithm consists of generating all derivations in G of length less
than 2n and comparing each graph with H.

THEOREM 6. Let G be a normal form 1-CFGG with k variables and with at
most n points on the right side of a production. Then L(G) is infinite if it contains
a graph with more than nk- points.

Proof. Let p nk- 1. It is easy to see that if a derivation tree has no path of
length greater than j, then the terminal graph derived contains no more than
nJ- points.

Hence if H is in L(G) and H contains more than p points, then the derivation
tree for H must contain a path of length greater than k. Choosing a path P of
longest length, we observe that there must be two nodes n and n2 satisfying the
following conditions:

1. Nodes n and n2 have the same label, say A.
2. Node n is closer to the root than node n2.

3. The portion of the path P from n to the leaf is of length at most k / 1.

FIRST ORDER GRAPH GRAMMARS 95

Let be the subgraph of H generated from node n and fl be the subgraph
generated from node tl 2. Then/3 must be a proper subgraph of because G is in
normal form. If we replace node n2 with a copy of the subtree rooted at n 1, we
obtain the derivation tree of a terminal graph H’ in L(G), and H’ properly contains
H. Repeating this process, we can obtain an infinite number of terminal graphs,
each of which is in L(G).

THEOREM 7. There is an algorithm .&r determining whether a given 1-CFGG
generates a finite or infinite number of graphs.

Proof. Let G, n, k and p be defined as in Theorem 6. Let q nk + 1. Suppose
that L(G) is infinite. Then there is a graph H in L(G) with more than p + q points,
and the derivation tree for H must contain a path oflength greater than k. Choosing
a path P of longest length, we observe that there must be two nodes nl and n2

satisfying the following conditions"
1. Nodes n and n2 have the same label, say A.
2. Node n is closer to the root than node n2.
3. The portion of the path P from n to the leaf is of length at most k + 1.
4. The subtree rooted at n contains at most q terminal nodes (leaves).
The subtree rooted at n2 is a proper subtree of the subtree rooted at n 1.

Replacing the subtree rooted at n with the subtree rooted at n2, we obtain a
smaller derNation tree for a graph H’ in L(G). Clearly H’ contains more than p
points, and if H’ contains more than p + q points, we repeat the above reduction
process until we obtain a graph H" in L(G) with m points, p < m <= p + q. Thus
L is infinite if and only if it contains a graph with m points, p < m __< p + q.

The algorithm consists of testing all graphs with between p and p + q points
for membership in L(G). If there is such a graph, then L(G) is infinite; otherwise,
there is no graph with more than p points in L(G), and L(G) is finite.

The last theorem in this section shows that a set of graphs resembling the
nonregular set {a"b"ln => is not generated by a 1-CFGG.

TI-IEORM 8. The set of graphs

a a a

L=fa__a a a ...}
is not a 1-CFGL.

Proof. Suppose L is generated by the normal form 1-CFGG G (N, T, P, S).
Let IN] k. Consider the derivation tree for the graph H in L with 2k +

lines and triangles. We will show that if H is generated by G, then so are several
graphs not in L.

The first step in the derivation of H is either

C

or ..
A B A B

Suppose S rewrites as a triangle. Then one of the variables, say C, must
rewrite as the terminal a. Let nA and nR denote the nodes labeled A and B, respec-
tively, in the derivation tree. Then either nA or nR must be the root of a derivation

96 CURTIS R. COOK

tree with a path P of length greater than k. Since each cutpoint of H lies in exactly
two blocks, the subgraph derived from the subtree rooted hA(riB) must be of the
form

If the subgraph consisted entirely of lines or triangles, two nodes on P have the
same label, and if we replaced the node closer to na(nB) with the other node we
have the derivation tree of a graph with too few triangles or lines to be in L.

A subgraph of this form must be derived from the subtree rooted at either
nA or n and not both. If the subtree is rooted at r/a, then the subgraph contains
the 2k + lines of H. But this leads to a contradiction, as two nodes in the sub-
tree have the same label, and by the same argument as above we can obtain the
derivation tree of a graph not in L. Similarly a contradiction is reached if the
subtree is rooted at n.

The same argument holds if ’S rewrites as a line" is the first step in the
derivation of H.

Therefore L is not a 1-CFGL.
3. First order linear graph grammars. The first lemma will be used in 4 to

show that the 1-LGL’s properly contain the 1-RGL’s.
LEMMA 6. Every finite set of graphs is a 1-LGL.
Next we give a first order version of a topological characterization which

appeared in [6].
THEOREM 9. If L is a 1-LGL, then there is a number k such that any cutpoint

of a graph in L separates the graph into components such that no more than two of
them have more than k points.

Proof. Let k be the maximum of points in the right side of a production. The
result follows from the following observation about the cutpoints of a graph in
L. There are two types of cutpoints in a terminal graph in L. The first type is a
terminal cutpoint in the right side of a production. This type of cutpoint separates
the graph into several components, only one of which contains more than k
points. The second type is a point which was a variable at some time in the deri-
vation. In this case, since the right side of each production contains at most one
variable, only one component with more than k points can be generated from
the point. Hence, including the portion of the graph generated prior to the appear-
ance of this point, this point separates the graph into at most two components
with more than k points.

COROLLARY 9.1. The set of all trees (Example 1) is a 1-CFGL, but is not a
1-LGL.

4. First order regular graph grammars. In this section we describe a normal
form for 1-RGG’s, give a simple graphical characterization of 1-RGL’s, and
show the relation between 1-RGL’s, cutpoint graphs, and regular sets.

THEORFM 10 (Normal form). Every 1-RGL can be generated by a 1-RGG in
which the right side of each production is a block, except the start symbol may re-
write as a terminal point.

Proof. Let L be generated by a 1-RGG G (N, T, P, S) satisfying Lemmas
1-4. Let G’= (N, T, P’, S), where P’ is constructed from P as follows:

FIRST ORDER GRAPH GRAMMARS 97

1. For each pair of productions a. e and , - ., where e is a block con-
taining the variable B, B N {S} and b e T, create a new production - /,where/ is the block e with the variable B replaced by b.

2. Remove all productions of the form . g, A - S, from P. It should be
clear that G’ satisfies the conditions of the theorem and that L(G) L(G’).

The cutpoint graph plays a central role in the study of 1-RGL’s. The points
of the cutpoint graph c(H) of a graph H are the cutpoints of H. Two points of
c(H) are adjacent whenever the corresponding cutpoints in H lie in the same block.

THEOREM 11. If L is a 1-RGL, then the cutpoint graph of each graph in L is
a path.

Proof. Let G (N, T, P, S) be a normal form 1-RGG generating L. Observe
that except for the start symbol, each variable which appears in a derivation of a
graph in L is a cutpoint of the graph. Hence at each step after the first in a deri-
vation, either a new cutpoint is generated or another block containing the last
created cutpoint is generated. Thus the cutpoint graph is a path.

COROLLARY 11.1. If L is a 1-RGL, then each block of H in L contains at most
two cutpoints of H.

Recall that every finite set of graphs is a 1-LGL (Lemma 6).
COROLLARY 11.2. The set of graphs

is a 1-LGL, but is not a 1-RGL.
COROILAR 11.3. Let L be a 1-RGL. IfH is in L, then for any three blocks of

H with a common cutpoint, at most two of them have another cutpoint of H.
Proof. Suppose blocks B1, B2 and B3 contain the cutpoint v of H and B

also contains the cutpoints ui, 1, 2, 3. Then in the cutpoint graph of H, these
four points would give rise to the graph

b/1 L/2

contradicting Theorem 11.
Note that the cutpoint graphs of the non-I-CFGL L in Theorem 8 are paths.

Hence Theorem 11 only gives a necessary condition for a set of graphs to be a
-RGL.

The next theorem shows that the set of the cutpoint graphs of a 1-RGL is a
1-RGL.

THEOREM 12. Let L be a 1-RGL. Then there is a 1-RGL which generates the
cutpoint graphs of L.

Proof. Let L be generated by a normal form 1-RGG G (N, T, P, S). We
will construct a 1-RGG G’= (N, T, P’, S) from G where the productions of P’

98 CURTIS R. COOK

are
1..s --, a, if .s --, e is in P, and A is the variable in e.
2. A. if . e is in P, A 4: S, and B is the image of A.
3. . f, if A. e is in P, A 4= S, a is the image of A, and B is the vari-

able in e.
4. . g if .A is in P, A - S, e is a terminal block, and a is the image of A.
The set of productions of G’ generate the labels of the cutpoints of a graph

in L(G) and joins two points with a line if the two corresponding cutpoints of the
graph in L(G) lie in the same block.

There is a natural relation between strings and graphs. The string alaz a,
corresponds to the path

a a2 an an

generated by the 1-RGG where al is the first point generated. The condition that
a be the first point generated enables us to associate exactly one string with the
undirected graph.

THEOREM 13. Let L be a 1-RGL. Then the set of strings corresponding to the
cutpoint graphs of the graphs in L is a regular set.

Proof. The proof follows immediately from the correspondence between the
productions of the 1-RGG constructed in the proof of Theorem 12 and the
regular string grammar productions. That is, the regular productions A aB,
A B, A--* a correspond to the 1-RGG productions A. and
A. ---, , respectively.

The converse of this theorem does not hold, as the set of strings correspond-
ing to the cutpoint graphs of L in Theorem 8 is a regular set.

Theorem 14 follows from the observation that the cutpoint graph of a path
is the same path with the two endpoints removed.

THEOREM 14. Let R be a regular set. Then there is a 1-RGG G such that R is
the set of strings corresponding to the cutpoint graphs of L(G).

Conclusions. We have defined three classes of first order graph grammars
and have obtained results analogous to those for their string grammar counter-
parts. The same sort of results should hold for higher order graph grammars.

Our investigations of first order context-sensitive graph grammars have led
us to conclude that, like context-sensitive web grammars, their rewriting rules
must include some type of embedding specification. This appears to be the reason
Pavlidis allowed his variables to be graph structures and not simply points and
lines.

Finally, we mention that the results of the preceding sections can readily be
extended to directed graphs.

REFERENCES
1] N. ABE, M. MIZUMOTO, J. TOYODA AND K. TANAKA, Web grammars and several graphs, J. Comput.

System Sci., 7 (1973), pp. 37-65..
[2] J. FEDER, Plex languages, Information Sci., 3 (1971), 225-241.
[3] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[4] J. HOPCROFT AND J. ULLMAN, Formal Languages and Their Relation to Automata, Addison-Wesley,

Reading, Mass., 1969.

FIRST ORDER GRAPH GRAMMARS 99

[5] U. MONTANARI, Separable graphs, planar graphs and web grammars, Information and Control, 16
(1970), pp. 243-267.

[6] T. PAVLIDIS, Linear and context-free graph grammars, J. Assoc. Comput. Mach., 19 (1972),
pp. 11-22.

[’7] J. PFALTZ AND A. ROSENFELD, Web grammars, Proc. Joint Internat. Conf. on Artificial Intelligence,
Washington, D.C., May 1969, pp. 609-618.

[8] T. PRATT, Pair grammars, graph languages and string-to-graph translations, J. Comput. System
Sci., 5 (1971), pp. 560-595.

SIAM J. COMPUT.
VOI. 3, No. 2, June 1974

OPTIMAL BINARY SEARCH TREES WITH
RESTRICTED MAXIMAL DEPTH*

M. R. GAREY]"

Abstract. An algorithm is given for constructing a binary tree of minimum weighted path length
for n nonnegative weights under the constraint that no path length exceed a given bound L. The
number of operations required is proportional to Ln 2. Such problems, which impose an additional
constraint on the usual Huffman tree, arise in many applications, including computer file searching
and the construction of optimal prefix codes under certain practical conditions.

Key words, algorithms, probabilistic search, variable-length codes

1. Introduction. Binary trees of minimum weighted path length have ap-
plication in many areas, including searching computer files, merging sorted lists,
diagnosing machine failures, and constructing variable-length codes. The well-
known Huffman algorithm [5] can be used to efficiently construct such optimal
binary trees. In this paper, we consider this problem under the additional re-
striction that no path length in the tree is permitted to exceed a given bound L.
Karp [6] described a rather complicated integer linear programming technique
for solving this problem in the context of constructing restricted-length prefix
codes. Gilbert [1] proposed using such codes when source probabilities are not
accurately known and gave an essentially enumerative method for finding a
solution. In [3], Hu and Tan derive an improved nonenumerative algorithm for
solving this problem, which, however, requires a computing time which grows
exponentially with L. We shall present an algorithm which is considerably more
efficient than any of these, requiring only O(Ln2) operations to construct an
optimal tree for n weights.

2. Definitions. Our terminology essentially follows [3]. A binary tree (called
an extended binary tree in [6]) consists of a distinguished node, called the root,
and two disjoint binary trees, called the left and right subtrees of the root, either
both empty or both nonempty. Nodes occurring in the two subtrees are called
descendants of the root, and all nodes having a given node as a descendant are
ancestors of that node. Nodes which have no descendants are called terminal
nodes, and all nodes which are not terminal are called nonterminal nodes. Notice
that every nonterminal node has at least two descendants. The path length of a
node in a binary tree is simply the number of ancestors of that node.

It is convenient to consider the terminal nodes of a binary tree to be ordered,
from left to right, as follows: given a binary tree T, the terminal node V is left of
terminal node F if and only if there exists a subtree T’ of T which has occurring
in its left subtree and V occurring in its right subtree. This is merely the left-to-
right order of occurrence of the terminal nodes in the usual planar representation
of the binary tree.

A weighted binary tree for the set of weights {w, W2, Wn} is a binary
tree with n terminal nodes, each labeled with a different one of the n given weights.

* Received by the editors February 12, 1973, and in final revised form September 28, 1973.- Bell Laboratories, Murray Hill, New Jersey 07974.
This is actually a multiset, since we permit different weights to have identical values.

101

102 M.R. GAREY

We use l(wi) to denote the path length of the terminal node labeled by wi. The
total weighted path length of a weighted binary tree is given by

W l(wi).
i=1

Given a set of nonnegative weights {w l, W2, Wn} and a positive integer
L, we consider the problem of constructing a weighted binary tree for this set of
weights which has no path length exceeding L and which has minimal total
weighted path length among all such trees. We shall call such a tree an optimal
L-restricted tree for {wl, w2, Wn }"

3. Preliminary lemmas. In this section, we present four preliminary lemmas
which will be useful later. The straightforward inductive proofs are omitted.

LEMMA 1. A binary tree with terminal node path lengths {11,12, In} exists

if and only if

2 -li-- 1.
i=1

(See Knuth [7, p. 404, Prob. 3] .)
LEMMA 2. Given positive integers 1’1, /z, "’", l’, satisfying

2-=< 1,
i=1

there exists a binary tree with terminal node path lengths {11, l, l} satisfying
li<= l’,l <__ i<= n.

LFMMA 3. An optimal L-restricted tree for {wl, w, w,,} exists if and only
if L >__ log n.

LFMNA 4. If L >_ log n and w >-_ w; >= >= w,,, then there exists an optimal
L-restricted tree for {w l, w,..., w} such that l(wl) <- l(w) <= <= l(w) and
such that the terminal node labels w l, w,... w appear consecutively from left
to right. (See Schwartz and Kallick [9].)

4. A dynamic programming solution. We now use the results of 3 to derive
a dynamic programming algorithm which constructs an optimal L-restricted
tree for {w l, w2, "", w,} in time Ln3. This basic algorithm will then be improved
to time Ln2 in 5.

For the rest of the paper, we assume that the given weights have been indexed
W2 . Wnso that w

Let T be any optimal L-restricted tree for {wl, w2, .-., w,} of the form
described by Lemma 4. Consider any nonterminal node V in T, and let K denote
the path length of V. By choice of T, the set of weights labeling the terminal
descendantsof Vmustequal {wtli <= <= j} ,for some integers andj, <= < j <= n.
The subtree of T with root V must be an optimal (L K)-restricted tree for that
set of weights, for otherwise we could replace it by such an optimal tree to improve
upon T, a contradiction. This latter fact, along with the special structure of the
terminal descendant sets, allows us to give an Ln3 algorithm for our problem
using a "dynamic programming" technique, similar to the method of [2].

OPTIMAL BINARY SEARCH TREES 103

Let [u, v, k], with __< u __< v __< n and 0 =< k __< L, denote the subproblem of
finding an optimal k-restricted tree for {%, %+1,"’, wv}. Let K[u, v, k] be the
total weighted path length of such an optimal tree for [u,v,k]. Whenever
k < log2 (v- u + 1), no solution to [u, v, k] exists, and we set K[u, v, k] oe.
Otherwise, we have

K[u, u, k] O, 0 <__ k <= L;

(*) K[u, v, k] wi + min
i=u u<l<v-1

(K[u, I, k 1] + K[I + 1, v, k 1]),

<=u<v<=n, log2(v-u+ 1)<=k<_L.

If I Io is a solution of (*), then an optimal tree for [u, v, k] consists of a root,
a left subtree which is optimal for [U, Io,k- 1], and a right subtree which is
optimal for [Io + 1, v,k 1]. Solving (*) for all required u, v, k in order of in-
creasing v u results in an optimal tree for the original problem [1, n, L].

It is convenient to define l[u, v, k] to be a specific choice of I satisfying (*),
with I[u, u, k] u. By saving l[u, v, k] it becomes unnecessary to save an optimal
tree for [u, v, k], since upon determination of I[1, n, L], the optimal tree can be
reconstructed directly from the saved I[u, v, k values.

The resulting algorithm requires a number of operations proportional to
Ln3. The analysis is similar to the analysis of the algorithm given in [2] and will
not be detailed here.

5. An improved algorithm. The algorithm of 4 can be improved with a
technique similar to that used by Knuth in 7]. The main result for obtaining
this improvement is a corollary to the following theorem, which is proved in the
Appendix.

THEOREM 1. For 2 <__ x + < y <= n and k >= 0,

K[x, y,k] K[x + 1, y,k] >= K[x, y 1,k] K[x + 1, y 1,k].
This essentially states that the increase in total weighted path length of the

optimal k-restricted tree caused by adding a new large weight Wm,x to a set S of
nonnegative weights is greater than the increase caused by adding Wmax to the
smaller set S {Wmin}, where Wmin is the least weight in S. Since the Huffman tree
is an optimal k-restricted tree when k is suitably large, we have the following
immediate corollary.

COROLLARY 1. Let H(X) denote the total weighted path length of the Huffman
tree for the set X of nonnegative weights. If T is a set of two or more nonnegative
weights, then

H(T)- H(T- {Wmax} g(z- {Wmin} g(z- {Wmax, Wmin}),
where Wmax and Wmi are, respectively, the largest and smallest weights in T.

Though Corollary is itself of some interest, it is stated merely as an inter-
esting consequence of Theorem and is not directly relevant to the problem at
hand. The next corollary, however, applies directly to our problem.

COROLLARY 2. Whenever I[u, v 1, k] <__ I[u + 1, v, k], there always exists a
solution to (*) such that

I[u, v 1, k] <- I[u, v, k] <= I[u + 1, v, k].

104 M.R. GAREY

Proof. We prove that we can choose I[u, v,k]<= l[u + 1, v,k]; the other
half follows symmetrically. More specifically, we prove that if (*) is minimized for
some I > I[u + 1, v, k] then (*) is also minimized for I I[u + 1, v, k]. Suppose
(*) is minimized for 11, where 11 > I2 I[u / 1, v, k]. From repeated application
of Theorem 1, we obtain

K[u, Ii,k- 1]- K[u + 1,ll,k- 1]_>_ K[u, lz,k- 1]- K[u + 1,I2,k- 1],

which we rewrite as

K[u, Ii,k- 1]- K[u, I2, k- 1] >__ K[u 4- 1, Ii,k- 1]- K[u 4- 1,I2,k- 1].

Adding K[I + 1, v,k-1]-K[I2 + 1, v,k-1] to each side and using the
optimality of 12 for [u + 1, v, k], we have

(K[u,Ii,k- 13 + K[I + 1,v,k- 1])-(K[u, Iz,k- 13 + K[I2 + 1,v,k- 13)

>= (K[u + 1, I1, k 1] / K[I1 + 1, v, k 13)

(K[u + 1,I2, k 1] + K[I2 + 1,v,k- 1])>=0.

Therefore, (*) is also minimized for I- I2, and we may choose I[u,v,k]
I[u + 1, v, k], completing the proof.
We now show how Corollary 2 simplifies the previous algorithm. Consider

all the subproblems [u, v, k] for a fixed k and fixed v u =.p. In solving (*) for
[i, p + i, k], we need only consider

+ I[i+ 1,p+ i,k]- I[i,p+ i- 1,k]

possible values for I. Summing this over i, we obtain

(1 +I[i+ 1,p+ i,k]-I[i,p+ i- 1,k])
i=1

(n p) + I[n p + 1,n,k] I[1,p,k] N2n-p- 1.

Thus, in solving all the subproblems for fixed v u p and fixed k, we need
only consider a total of at most 2n p tentative solutions. Since there are
only n + possibilities for p and L + possibilities for k, the revised algorithm,
which simply uses Corollary 2 to reduce the values of I considered in solving
(*), requires only O(Ln2) operations. Note that, in order to achieve this efficiency,
it is also necessary to compute the weight sums using previously computed
weight sums, that is, according to

Wi Wi / Wv,
i=u i=u

which requires only a single addition. A FORTRA version of this algorithm,
implemented on the HIS 6070 by Mary Ann Gatto, required approximately
Ln2/10 milliseconds.

An additional feature of this algorithm is that one actually obtains the
optimal codes and their costs for all length restrictions less than or equal to L
with a single application of the algorithm. This provides the user with potentially
useful information concerning the effects of various length restrictions on the
optimal solution cost.

OPTIMAL BINARY SEARCH TREES 105

6. An open problem. The unimproved dynamic programming algorithm of
4 can be used to solve a more general problem. Define an optimal alphabetic

binary tree [4] for a given sequence of weights w 1, w2,..., w, (not necessarily
ordered by magnitude) to be a weighted binary tree having n terminal nodes
labeled by w l, w2, ..’, w, in consecutive left-to-right order and having minimal
total weighted path length among all such trees. One can then consider the
analogous problem of constructing an optimal L-restricted alphabetic binary
tree. It is easy to see that the Ln3 algorithm of 4 can be applied directly to solve
this problem. However, an interesting open problem is to determine whether one
can improve this algorithm with a result similar to Corollary 2. The proof of
Theorem 1, which is used in proving Corollary 2, cannot be extended directly to
this more general problem, because it depends strongly on the magnitude ordering
of the given weights.

Appendix. Proof of Theorem 1.
THEOREM 1. K[x, y, k] K[x + 1, y, k] >_ K[x, y 1, k] K[x + 1, y 1, k].
Proof. If no tree exists for Ix, y, k], then K[x, y, k] 0, and the inequality

holds trivially. Otherwise, let T[x, y, k] denote a fixed optimal tree for Ix, y, k]
with /l(r) denoting the length of wr in T[x,y,k], x <_ r <_ y. Similarly, let
T[x + 1, y- 1, k] denote a fixed optimal tree for Ix + 1, y- 1, k] with /2(r)
denoting the length of wr in that tree, x < r < y. By Lemma 4, we may assume
that l(r)<=l(r +_1) and /2(r)=<12(r+ 1), for all r satisfying x=<r<y or
x < r < y 1, respectively.

Define m as the largest element of {rll2(r) < k, x < r < y}.2 Construct a
tree T’ for Ix + 1, y, k] from T[x + 1, y- 1, k] by replacing the terminal node
for Wm by a nonterminal node with two terminal descendants, one labeled w,, and
one labeled Wm+ 1, and replacing each old label w, by w,+ for m + =< r =< y 1.
With l’(r) denoting the lengths in T’, we then have

l’(r)= /2(r), x < r <y, r#m, r:/=m+ 1,

l’(m) l’(m + 1)= 12(m) + 1,

l’(y) max (/2(Y 1),/2(m) + 1).

Define A(r) l(r) l’(r) for x < r _< y. Notice that A(m) _< A(m + 1), because
l(m) <= l(m + 1), and A(r) __< 0 for m + 2 __< r __< y, since then /’(r) k >= l(r).
We now consider a number of cases.

(a) Suppose l’(x + 1) < l(x). Construct a tree T* for Ix, y, k] from T’ by
replacing the terminal node for wx+ by a nonterminal node with two terminal
descendants, one labeled Wx and one labeled w,+. Let A*(r)=/(r)-/*(r),
x __< r __< y, where l*(r) denotes the length of w, in T*. Then A*(x + 1) >__ A*(x)
>__ 0. Let T" be a tree for Ix + 1, y, k] with lengths /"(r) satisfying /"(r) _</’(r)
+ A*(r), x + _< r __< y. To see that such a tree exists, we need only show that

y

2-l’(r)-A*(r) 1.
r=x+l

Note that this set is nonempty since T[x, y, k] exists.

106 M.R. GAREY

However, we have
y

r=x+

Y

2- l’(r) A*(r)

r=x+2

Y

r=x+l

Y

r=x+l

2- l*(r) A*(r) _{_ 21 l*(x + A*(x +

2 -/l(r) + 2 -/l(x+l)

2 -/t(r) + 2 -tt(x) 1.

y- F w,A*(r)
r=x+l

Y

>= wA*(x) wA*(r)
r=x+l

K(T*)- K[x, y, k] >= O.

K[x,y, k]- K[x + 1, y, k] >= K[x,y, k]- K(T")

>__ K(T*) K(T’)

Wx+ + w(1 + l’(x + 1)).

Now we can construct a tree T for [x,y 1, k] from T[x + 1, y- 1,k] by re-
placing the terminal node for wx+l by a nonterminal node with two terminal
descendants, one labeled wx and one labeled Wx/ 1. This is legal because l’(x + 1)
>= 12(x + 1). We then have

K[x,y, k] K[x + 1, y, k] >__ Wx+l + Wx(1 + l’(x + 1))

>= Wx + + wx(+ 12(x + 1))

K(T)- K[x + 1,y- 1,k]

K[x,y- 1,k]- K[x+ 1,y- 1,k],

proving the theorem for case (a).
(b) Suppose A(m + 1) N 0 and l’(x + 1) __> l(x). We claim that then there

exists a tree T* for Ix, y, k] with lengths/*(r) satisfying

l*(x) (x),

l*(r)- l’(r) if A(r) __< 0,

l(r) >= l*(r) >= l’(r) if A(r) > 0.

We give an explicit construction for T*. Initially, set l*(x) /l(X) and l*(r) l’(r)

Therefore

y

K(T’)- K(T")= w(l’(r)- l"(r))
r=x+l

Thus there exists such a T". Letting K(T) denote the total weighted path length
of T, we have

OPTIMAL BINARY SEARCH TREES 107

for x < r _< y. At this point, we have
y y

2-l*(r) 2-ll(X) ..ll_. 2 2-l’(r)
r=x+

--2-l’(x)-+ > 1.

As long as = 2-/*(r) > 1, choose s such that l*(s) < l(s) and l*(s) is as small
as possible;increase l*(s) by 1. Since

y y

Z 2-max(/l(r)’/’(r)) Z 2-tl(r) 1,

we must eventually obtain values for l*(r) satisfying= 2-l,r) < 1. Furthermore,
since increasing l*(s) by one decreases 2rr=x 2-/*(r) by 2 -/*(s)- < 2-t,tx), and since
the choice of s dictates that each reduction is no larger than the previous re-
duction, it is easy to see that we in fact will obtain =, 2-/*(r) 1.

We now proceed as in case (a). Define A*(r) /l(r) -/*(r), x =< r =< y. Let
T" be a tree for Ix + 1, y, k] with lengths /"(r) satisfying l"(r) <_ /’(r) + A*(r),
x + _< r =< y. The existence of such a T" follows from Lemma 2, since, using
the fact that either l*(r) l’(r) or both l*(r) > l’(r) and A*(r) _>_ 0, we have

y

1-- 2 -/’(r)-x*(r)-- Z 2-t’()(1-2-a*())
r=x+ r=x+

Y

>= 2-l*(r)(1 2-*))
r=x+l

Y Y

2 2-t*{r) 2 2-") O"
r=x+ r=x+

Exactly as in case (a), we obtain K(T’) K(T") >= K(T*) K[x, y, k], yielding

K[x, y, k] K[x + 1, y, k] >= K(T*)- K(T’).

Now we construct a tree for Ix, y 1, k] which has lengths i(r) satisfying

i(r) l*(r), x <__ r < m,

i(r) /2(r), m __< r < y.

This tree exists because

y--1 m--1 y--1

2-(r) 2 2-l*(r)
__
Z 2-/2(r)

r--x

m-1 y

Z 2-- l*(r) "Jr- Z 2--l’(r)

y

2-l*(r) 1.

108 M.R. GAREY

We now have
y-1 m-1

E wr(i(r)- 12(r))-- E wr(i(r)- /2(r))
’--’X

m--1

w,(l*(r)- l’(r))

w,(l*(r)- l’(r)).

Therefore

K[x, y, k] K[x + 1, y, k] >__ K(T*)- K(T’)

=K(T)-K[x+ 1,y- 1,k]
>_ K[x,y- 1,k]- K[x + 1,y- 1,k],

completing the proof for case (b).
(c) Suppose A(m) __< 0, A(m + 1) > 0 and l’(x + 1) >__ l(x). We claim that

then there exists a tree T* for Ix, y, k] with lengths/*(r) satisfying

l*(x) l(x);

l*(r)=l’(r) ifr=m+ or A(r)=<0;

/l(r)>=l*(r)>=l’(r) ifrg:m/ and A(r)>0.

If we can show that

Y

rJm+
2 -maxtttr)’rtr)) + 2 -rtm+ l)__< 1,

then the same method for constructing T* as in case (b) can be used. We now show
that this is the case.

There exist positive integers A, such that 2 -l’tr) 2 -lltr) A. 2 -l’tm for all
r m + satisfying A(r) > 0, because l’(m) >= Ix(m) >= Ix(r) > l’(r) for all such r.
Let A denote the sum of all the A. If the desired inequality were not satisfied,
then

Y

rm+l

2-max(l(r),l’(r)) .+_ 2-/’(re+l)

E 2-/’(r) + 2-l’ A-2 -rt’)

r=x+l

+ 2-l(x) A. 2-

which implies that

A. 2-t’(,.) >_ 2-2-/l(x)

OPTIMAL BINARY SEARCH TREES 109

But then we have
y

2 -/r)
r’-x

y

> 2 -max(lt(r)’l’(r))

Y

r:gm+

2-max(ll(r),l’(r)) + 2-/1(m+ 1)

+ 2 -lt(x)- A. 2 -’(’) + 2 -tt(m+ 1)_ 2-t’(m+)

>_ + 2 -rCm) + 2 -t’(m+) 2 -t’tm) > 1,

a contradiction. Thus, we can construct such a T* using the method of case (b).
The rest of the proof for case (c) follows exactly as in case (b).

(d) Suppose A(m + 1) _>_ A(m) > 0 and l’(x + 1) _>_ l(x). Using the same
method as in case (c), it is not hard to show that we can use the method of case
(b) to construct a tree T* for Ix, y, k] with lengths l*(r) satisfying

l*(x) (x),

l*(r) l’(r) if A(r) <_ 0,

l(r)>_l*(r)>=l’(r) ifA(r)>0 and x<r=<m,

l*(m + 1)--l*(m).

As in case (b), we also obtain

K[x, y, k] K[x + 1, y,k] >_ K(T*)- K(T’).

Now we construct a tree for Ix, y 1, k] which has lengths i(r) satisfying

i(r) l*(r), x <= r < m,

i(m) l*(m)- 1,

i(r) 12(r), m < r < y.

This tree exists because

y-1 m-1 y-1

2 2-() 2 2-’*") + 2-/’(m)+l + 2 2-/z(r)
r=x r=m+

m-1

2 2-/*r) "+" 2-/*{m) + 2-/*{m+ 1)+ 2
r=m+2

2- l*(r)

y

2-1"r) 1.

110 M.R. GAREY

We then have

y--1

2 w,(l*(r)- l’(r))

m+l

< Z w(l*(r)- l’(r))

Y

w(t*(r)- r(r)).

Therefore

[x, y,] [x + 1, y,] (r*)- (r’)

> g(r)- K[x + 1,y- 1,k]

K[x,y- 1,k]- K[x + ,y- ,],

completing the proof for case (d) and proving the theorem.

REFERENCES

[1] E. N. GILBERT, Codes based on inaccurate source probabilities, IEEE Trans. Information Theory,
IT-17 (1971), pp. 304-314.

[2] E. N. GILBERT AND E. F. MOORF, Variable-length binary encodings, Bell System Tech. J., 38 (1959),
pp. 933-967.

[3] T. C. Hu AND K. C. TAN, Path length of binary search trees, SIAM J. Appl. Math., 22 (1972),
pp. 225-235.

[4] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable-length alphabetic codes,
Ibid., 21 (1971), pp. 514-532.

[5] D. A. HUFFMAN, A method for the construction of minimum redundancy codes, Proc. Inst. Radio
Engineers, 40 (1952), pp. 1098-1101.

[6] R. M. KARP, Minimum redundancy coding for the discrete noiseless channel, Inst. Radio Engineers
Trans. Information Theory, IT-7 (1961), pp. 27-38.

[7] D. E. KNUTH, The Art of Computer Programming, vol. l, Addison-Wesley, Reading, Mass., 1968,
pp. 399-404.

[8] --, Optimum binary search trees, Acta Informat., (1971), pp. 14-25.
[9] E. S. SCHWARTZ AND I. KALLICK, Generating a canonicalprefix encoding, Comm. ACM, 7 (1964),

pp. 166-169.

SIAM J. COMPUT.
Vol. 3, No. 2, June 1974

JUMP PDA’S AND HIERARCHIES OF
DETERMINISTIC CONTEXT-FREE LANGUAGES*

S. A. GREIBACHf

Abstract. A jump pushdown store acceptor can in one step erase its store through the first occur-
rence of one of its pushdown store symbols. Every deterministic context-free language can be accepted
by a deterministic jump pushdown store acceptor operating with finite delay (semirealtime). For
deterministic jump pushdown store acceptors operating with finite delay, n + types of pushdown
store symbols are more powerful than n types of pushdown store symbols. As a consequence; it can
be shown that the family of deterministic context-free languages does not form a principal AFDU

Key words, deterministic context-free, pushdown store, hierarchies, jump pda, semirealtime

1. Introduction. The family of deterministic context-flee languages has been
extensively studied from the point of view of both grammars and machines
[2], [3], [4]. Various subfamilies have been found by placing restrictions on
grammars or machines or both [5], [63, [73, [83, [93, [103. Recently there have
been various studies of the structure of context-flee languages and other non-
deterministic systems [11], [12], [133, but no satisfactory algebraic or operation-
based theory has been developed for deterministic context-flee languages; the
results of this paper indicate such a theory might not be possible.

The AFDL (Def. 2.7) has been suggested by Chandler as a model for deter-
ministic systems [143 He showed that any family of one-way deterministic accep-
tors with input endmarkers which satisfies a few minor conditions (any closed
class of one-way deterministic balloon automata [15]) is closed under certain
operations and forms an AFDL, that every AFDL can be so expressed, and further
that every principal AFDL can be deterministically accepted by machines with
one-way input and a finite number of working tape symbols and instructions
(finitely encodedDef. 2.1). So far, this parallels the results for AFL’s and non-
deterministic systemsevery family of one-way nondeterministic acceptors
operating with finite delay (closed class of one-way nondeterministic balloon
automata) forms an AFL containing {e} and vice versa [16]. However, in the
nondeterministic case, finitely encoded storage always yields a principal AFL
[173. A corresponding result does not hold for one-way deterministic machines.

The family cg of deterministic context-flee languages can be accepted by
deterministic pushdown store acceptors with only two pushdown store symbols
and a finite number of instruction types. However, we shall show that is not a

Received by the editors December 1, 1972, and in final revised form November 12, 1973.- Department of System Science, University of California at Los Angeles, Los Angeles, California
90024. The research represented in this paper was supported in part by the National Science Founda-
tion under Grant GJ-803.

An AFL is a family of languages containing at least one nonempty set and closed under union,
concatenation, Kleene +, homomorphism, inverse homomorphism and intersection with regular
sets.

The least AFL containing a language L is the principal AFL generated by L.

111

12 s.A. GREIBACH

principal AFDL by expressing as t_J,g, for a strictly increasing chain ofAFDL’s,, all proper subfamilies of the family of deterministic context-free languages.
Informally, our result says that there is no deterministic context-free language

"universal" with respect to the AFDL operations. That is, there is no deter-
ministic context-free language from which all others can be obtained using AFDL
operations. By contrast, in the one-way nondeterministic case, finitely encoded
storage always implies the existence of a "universal" language. In particular,
there is even a context-free language L0 "universal" with respect to inverse
homomorphismmevery context-free language is an inverse homomorphic image
of L0 (or Lo-{e}); thus L0 is the "hardest" context-free language to recognize
(or "parse") deterministically. This point and its implications are discussed
further in [20]. No analogous result can hold for deterministic context-free
languages.

The bulk of this paper is concerned with defining the g, and proving that
they form an infinite hierarchy of deterministic context-free languages. First we
define jump pushdown store automata or JPDA’s--pushdown store automata
with instructions such as "erase up to and including the first A on the pushdown
store." Then we extend a result of SchiJtzenberger [18] to show that every deter-
ministic context-free language can be accepted with finite delay by a deterministic
JPDA. This is not true for ordinary pda’s where the best we can do is linear time.

Now in linear time, a deterministic pda or JPDA with only two pushdown
store symbols is as powerful as any such machine. But if we restrict JPDA’s to
acceptance with finite delay (semirealtime in [8]), we find that we need more and
more types of jumps and hence more and more pushdown store symbols. Thus
each , is formed of languages accepted with finite delay by deterministic JPDA’s
using n pushdown store symbols.

To prove that n + 1 symbols are more powerful than n in this context, we
define a corresponding type of Dyck setma Dyck set with "wipeouts". In an
ordinary Dyck set, a "negative" symbol fii cancels a corresponding "positive"
symbol ai immediately to its left; aifii * e. A "wipeout" Ei cancels everything up
to and including the first corresponding "positive" symbol ai to its left, provided
only positive symbols intervene; aiyE * e if y contains neither ai nor any fij or

Ej. A formal definition appears in 2. We obtain our hierarchy by showing that
the n + symbol Dyck set with wipeouts is in cg,+ cg,.

So the deterministic context-free languages give us a natural example of a
deterministic family defined by a family of finitely encoded one-way deterministic
acceptors which is not a principal AFDL. Also, , is a natural example of a family
of deterministic languages not closed under union with regular sets.

In 2 we define JPDA’s, Dyck sets with wipeouts, and the ,, and show that

U.C.. In 3 we establish the hierarchy results. Section 4 contains con-
clusions and open problems.

2. Jump pda’s and Dyck sets with wipeouts. In this section we define the
family of pushdown store acceptors with "jump" instructions, and show that
they can recognize with finite delay all and only deterministic context-free
languages. Then we define the associated extended Dyck sets which we use in the
next section to obtain our hierarchy results.

JUMP PDA’S 113

A comparison of the definition of deterministic pushdown acceptors used by
Schtitzenberger [18] with the results of Ginsburg and Greibach [1]a shows that
every deterministic context-free language can be accepted in realtime by a push-
down store acceptor which at one move can either write a symbol on the pushdown
store, leave the store alone, or else "jump" down the store to erase the first
member of some fixed regular set. In this paper we shall use variants of this model.

We shall be introducing several modifications of pushdown store machines,
all of which are deterministic, have endmarkers and accept by final state, but
which vary in the types of instructions they can use. To avoid redefining machines,
instantaneous descriptions, computations and so on for each modification, we
introduce the following general definition of a storage schema.4 It consists of a
working tape Symbol set, an instruction set and partial functions g andf indicating
how the storage is accessed (g(x)) and changed (f(x, u)). For our purposes, the
access will always be in the pushdown mode reading from the right. When f(x, u)
is undefined, it indicates that instruction u applied to tape contents x is illegal;
that g(x) is undefined indicates an illegal storage configuration. Let ’ abbreviate
"is undefined" and abbreviate "is defined".

First we define a storage schema in terms of a working tape vocabulary 1-’,
instruction set I and storage access (g) and transition (f) functions, and a few
technical restrictions onfand g. The first restriction says that there is a designated
initial storage condition (assumed for convenience to be empty storage) which
can be distinguished from all other storage configurations. The second implies
the existence of "stand still" instructions allowing the state of a machine to be
changed or the input tape advanced without altering the storage. The third re-
striction is a very weak finiteness condition limiting the new symbol types an
instruction can add to storage.

DEFINITION 2.1. Let F be a set of symbols, I a set, f and g partial functions
from F* I into F* and from F* into F*, respectively. Then f (F, I, f, g) is
a storage schema if (i) g(e) e and g(x) # e for x #- e, (ii) for each in g(F*) there
is a u 1 such that g(x) 7 implies f(x, ur) x, and 0ii) for each u I there is a
finite F,

F such that if x F andf(x, u)J,, then f(x, u) (F U F,)*. If I U g(F*)

is finite, then f is finitely encoded.
Thus a finitely encoded schema has a finite number of instructions and a

finite amount of information available from the storage at a given step. For ex-
ample, a finitely encoded pushdown store schema might have two pushdown
store symbols (A and B), a few instructions (for example: no change, add A to
top, add B to top, erase top symbol) and, although there are infinitely many
possible tape contents, the access function only reads the top symbol and learns
one of three things (top is A, top is B, or tape is empty).

Now we define a deterministic f-machine as an acceptor with a finite state
control (state set K, transition function 6), one-way input tape and an endmarker
$, employing a storage tape of type f.

DEFINITION 2.2. For storage schema f (F, I, f, g), D (K, E, 6, qo, F, $) is
a deterministic f-machine if K and g are finite sets of states and inputs, $ E is

This has been pointed out by P. C. Fisher [23] and is implicit in his 1966 paper [24].
Also called an AFA schema in [16] and [17].
Let e be the empty word, L* the closure of L under concatenation and L LL*.

14 S.A. GREIBACH

an endmarker, qo K, F
_

K, and 6 is a partial function from K x (E U {$, e})
x F* into K x I such that

(i) Go {yl:lq, a, 6(q, a, 7)+} is finite, and
(ii) for all q K, a e E U {$}, 7 Go, if 6(q, e, 7)+, then 6(q, a,) is undefined.

A member of K x E* x F* is an instantaneous description (ID); we define re-
lations - and - on ID’s as follows. If 6(q, a, 7) (q’, u), w E*, g(x) 7 and
f(x,u),, then (q, aw, x) - (q’, w, f(x, u)). For ID’s C1, C2. and C3, C1 & C1, and
if Cx k C2 and C2 0- C3, thenC- C2 if C k C2 for any k, then Cx - C2. If
there is a k such that (q, e, x) (q’, e, x’) implies n __< k, then D is finite delay and
of delay k. If 6(q, e, 7)T for all q K and 7 Go, then D is realtime. The language
accepted by D is L(D) {w y*[:lq F, (qo, w$, e) - (q, e, e)}.

If f is not finitely encoded, the totality of f-machines might make infinitely
many distinctions among storage tapes, but a given fl-machine D should only
recognize a finite number, hence Go must be finite. Thus if f represents a push-
down store scheme with countably many pushdown store symbols A 1, AE, ...,
a given machine D will only deal with a finite subset Go {Aj, ,..., A}.

The definition of an instantaneous description of D is standard" state, input
to be processed, and storage contents. If D is in state q, the storage contains x,
the information sent to D is g(x), the input is a, and 6(q, a,g(x)) 6(q, a,

(q’, u), then D changes state to q’ and the storage is changed to f(x, u). If a
this implies that D reads input symbol a and advances the input tape;if a e,
D acts without consulting or advancing its input tape. If D has no transitions
fi(q, e, /), it must advance its input tape at each move and so acts in realtime. The
machine D accepts input w if it can start with initial state qo and empty storage,
read all of w$ (w plus endmarker), and end in a final state with empty storage.

We have only defined deterministic f-machines with endmarkers ($). A
nondeterministic -machine D (K, Z, , qo, F) would be similarly defined except
that fi would be a function from K x (E U {e}) x F* into the finite subsets of
K x I and the endmarker would be dropped; Go is still finite, and

L(D) {w[q F, (qo, w, e) - (q, e, e)}.
Unless otherwise stated, by f-machine we shall mean a deterministic acceptor.

DEFINITION 2.3. For a storage schema f, the family of deterministic languages
defined by f is

d() {L(D)ID is an f-machine}
and the family of almost realtime languages is

,t,.(f) {L(D)ID is a finite delay f-machine}.
The storage schemas we are interested in are pushdown-like. We always have

g(e) e and g(xA) A, indicating that the machine always knows whether the
pds (pushdown store) is empty and, if nonempty, what the topmost (rightmost)
symbol is. First we define o-machines, pda’s which can erase at one step members
of a regular set.

DEFINITION 2.4. Let F be a countably infinite set of distinct symbols. For each
regular set R in (F), the family of regular sets over F*, let (R) be a new symbol.
Let I F U {e} U {(R)[R e(F)}. Let flo (F,I,f,g) be the storage schema

JUMP PDA’S 115

defined by g(e) e, g(xA) A, and f(x, A) xA, f(x, e) x for A in F and x
in F*, andf(xy, <R>) x ifx e F*, y e R and if y YY2 and Y2 R, then Yl e;
f(x, <R>) is undefined if x F*R. Let eft o(f).

An fo-machine has three types of instructions. The instruction e leaves the
pds alone. The instruction A adds A to the top of the pds (without erasing any-
thing already on the pds). If R e (F), the instruction <R> erases from the pds
the rightmost member of R if the pds contents is not a member of F’R, the com-
putation blocks.

It should be clear that by adding new states to compute the reversal of R
for <R> instructions, we can get a deterministic pda to simulate an fo-machine.
Similarly we can simulate any deterministic pda with an fo-machine, so
is the family of deterministic context-free languages. Using a very different no-
tation, Schtitzenberger has shown [18] that every deterministic context-free
language can be accepted in realtime by a deterministic fo-machine, and so
t(fo) 2,e(fo). Hence is the family of deterministic context-free languages.

To establish our hierarchy, we shall use a subclass of f machines where the
erase instructions <R> say, in effect, "jump back past the first occurrence of A"
for some letter A.

DEFINITION 2.5. For n __> 1, let F, {A,..., A.} and I, F, U {e}
U {E, ..., E,}, where the A and Ej are all distinct. Let f, (F,, I,,f,,g,) be
the storage schema defined by g,(xAi) Ai, g,(e) e, f,(x, A) xAi for x e F,*,

=< =< n, f,(x, e) x for x F,* and L(xAy, E) x for x F,*, y (F, {A})*,
=< =< n; ifx e(F, {Ai})*, then f,(x,E) is undefined. Call f,-machines pda’s

with jumps or JPDA’s. Let ,
We now wish to argue that cg U,>_ cg,, so that simple jumps suffice to

accept with finite delay any deterministic context-free language. This result is
not really novel or surprising. It is closely related to Cole’s result using tabulator
machines [8]. The primary difference is that a JPDA uses the same symbols
both as pushdown store symbols and as tabs, so that while an n tab machine can
add to n tabs any number of pds symbols, a member of f, has just n symbols.
Other less important distinctions are that jpda’s have endmarkers and accept
by final state and empty storage and jump below, not to the first occurrence of a
"tab". In general, a finite delay tabulator machine can simulate a finite delay
f,-machine using n tabs; a finite delay n tab machine can be simulated by a finite
delay , + -machine, using two extra symbols to handle the tabulator’s extra pds
symbols and one to empty the store at the end. Reference [8] restricts attention
to machines that always halt, while we do not; for these pda variants, this makes
no difference.

Thus we state Theorem 2.1 without proof, using [8] for justification. A com-
plete, detailed and independent proof can be found in the original version of
this paper [32].

THEOREM 2.1. cg
Now one convenience of using the general notion of storage schema is that

we can immediately deduce certain closure properties of ’,(f) and 5() for
every storage model we use.

DEFINITION 2.6. A gsm is a sextuple M (K, , A, 6, 2, qo), where K, 2; and
A are finite sets of states, inputs and outputs, 6, the transition function, is a function

116 s.A. GREIBACH

from K x Z into K, and 2, the output function, is a function from K x E into A*
and q0 K. We extend and 2 to K x E* by 6(q,e)= q, 2(q,e)= e, 3(q, xa)

((q, x), a) and 2(q, xa) 2(q, x)2(fi(q, x), a), for q K, x E* and a E. If
6(q, a) p, 2(q, a) y, we sometimes write (q, a) --, (p, y) and if 6(q, w) p,
2(q,w) y, we write (q, w) (p, y) for p, qK, aE, wE*, yA*. We define
M(w) 2(qo, w), M-(w) {y[M(y) w}, M(L) {M(w)[w L} and M-(L)

{y[M(y) L} for a word w or a language L, and call M(L) a gsm mapping and
M- (L) an inverse gsm mapping of L.

DEFINITION 2.7. An AFDL is a family of languages containing at least one
nonempty e-free6 language and closed under inverse gsm mappings, marked
union and marked star,7 and removal of endmarkers.8 The least AFDL containing
a language L is denoted by d(L) and is called a principal AFDL.

PROPOSITION 2.1 (Chandler [14]). For any storage schema , Ld(and
() are AFDL’s. Any AFDL is closed under derivatives,9 intersection with
regular sets, and concatenation with single symbols.

COROLLARY. c is an AFDL for each n >= 1, cA, is an AFDL.
We shall show that cA, cg,+ for each n, and hence cg is not a principal

AFDL. This is rather surprising since context-free languages do form a principal
AFDL [20]. It highlights some of the distinctions between deterministic and non-
deterministic systems. Context-free languages can be accepted in quasirealtime
using only finitely many symbols and instructions.

3. The hierarchy theorems. In this section we show that q./ n for
each n. The language L.+I we show to be in c.+1 cg. is the obvious general-
ization of a Dyck set on n + letters to add "wipeout" or "long range cancel"
symbols.

DEFINITION 3.1. For n => 1, let X.,+ {al, "., a.}, Z.,_ {1, "", .},
’n,e {El, "", E.} and E. E.,+ U X.,_ U }2n,e. We define a relation g on
E* x E.* inductively as follows" (i) * is an equivalence relation" (ii) for < < n,
Wl,W2 eE.* wlaiiw2 * wlWz;(iii)for <= <= n, wa,wzeZ*. ;ifxe(Z.. + {ai})*,
then wlagXEiw2 * ww2. Let L. {w e Z.*lw * e}.

It is evident that L. is in off. for all n. The intuitive reason why L.+ is not in
cg. should be clear. In order for deterministic finite delay machines to suffice, we
must have "jumps" Ek [1], [21], [22]. Now since we are allowed finite delay, there
is no problem in using a small number of symbols--even two--to encode ai or
fi in a standard way. But the "jumps" cause a problem since we jump to a symbol
and not to the encoding string. So if, say, a is encoded by A2A on the pds and aj
by A1/2AI and on seeing Ei we want to jump through A2A 1, the best we can do is
execute an E jump and see how many A2’s lie below, until we have passed AizA.
But since any number of aj’s can intervene, this destroys the finite delay property.
The reader can try other more sophisticated encodings and verify that the same

An e-free language does not contain the empty word.
If L U L

_
* and c q E, then L U cL is a marked union of L and L and (Lc)* a marked

star of L.
If c E and L

_
Y*c, then c is an endmarker of L and removing c yields L/c {w[wc L}.

If L is a language and w a word, the left derivative of L by w is w/L {ylwy6 L} and the right
derivative L/w {y[yw L}.

JUMP PDA’S 17

problem occurs. The advantage offinite delay in permitting encodings not possible
in realtime is destroyed by the disadvantage ofjumping to a symbol not a string.

This is, alas, not a formal proof. As a first step we might like to show that
g’. is not closed under union with regular languages because it does not contain
L L,,d I..J Z*.c. One’s intuition says that one pds symbol at the bottom must be
"reserved" in order to empty the store and accept whenever c appears, so in effect,
only n- pds symbols can be used to recognize L.. There are some subtle
difficulties involved, and in Lemma 3.1 we show, rather painfully, that if L is in
cg., then L. can be done by an ._ 1-machine which is also "allowed" up to k
occurrences of A. on the pds for some fixed k. We formally define this concept.

DEFINITION 3.2. For n >= 2, k >= 1, let .,k (F., I., f.,k, g.), where for
x F*., f.,k(x, Ai) xAi for __< __< n 1, f.,k(x, A.) xA. if x contains at most
k occurrences ofA.,f.,k(X, A.) is undefined ifx (F.*_ 1A.) F., andf.,k(x, e) x
and f.,k(x, Ei) f.(x, Eg) for all x F.* and all i, =< n. Let .,k 5tr(.)

Thus an .+ 1,k-machine, like an .-machin.e, has at its disposal n pds
symbols (A1,’", A.) and so n kinds of jumps (El,.’-, E.), which can be used
without restriction. In addition, it can have on its tape up to k occurrences (but
no more) of an (n + 1)st symbol (A.+ 1) and thus use up to k occurrences in a row
of an (n + 1)st jump (E.+ 1).

We shall show that as k grows and more type n + jumps are allowed, we
can handle more and more of L.+ but never all of L.+ 1. Again, it is intuitively
clear that if a "large" word in L.+ contains k nested occurrences of E.+ 1, we
will need k jumps of type E.+ to recognize it correctly. Thus words in L.+ of
the form

a.+ lxl a.+ lXkbkYk_ lbk_ ylbl

with b 1, b 6 {2.+ 1,En+ 1} and x1, Xk, Yl Yk-]n*, "need" k E.+
jumps and form a language in cg.+ 1,k but not .+ 1,k- 1. Indeed, Lemma 3.2 allows
us to conclude that if this is true for k 1, it is true for k; however, the formal
argument is far from simple.

We shall show that for n _>_ 2 and all k, LJr c.,r g t g c.+ 1,1 and
g cg.,k+ 1. The strategy is to observe that the inequalities hold at the bottom
(LI, q2, g cg2 and c2, g 2,k+ 1), because they hold in the nondeterministic
case, and then use two lemmas, 3.1 and 3.2, to obtain the general case by a double
induction (on n and k).

We shall find convenient the fact that by Proposition 2.1 each .,k is an
AFDL and hence Uk>_l "n,k is an AFDL for each n > 2.

First we notice that cg contains only one counter languages and that -the family of nondeterministic k counter languages described in [12], is the homo-
morphic closure of cg2, [16], [25], so since ,,o -+ 1,,, obviously cg2,

Cgz,k+ [12]. Finally, L2 is in cg
2 (Jk 2,k since Lz f’l (E2, + U E2,-)* is not in

any ,o, and so afortiori not in any c2,k [12].
As a first step in chaining our way up, we show that if L.+ is in cg., then L.

is in LI cg.,k and that L. is in 1.3 cg.,k if and only if cg. is closed under union with
regular sets. These results are immediate consequences of the following technical
lemma.

]8 S.A. GREIBACH

LEMMA 3.1. Let L1, L2

2;* be languages such that Init L L2 .1 Let c, d

be new. For n >= 2, if L lc U L2d is in cn, then there is a k such that L is in cgn,k.
Proof. If L L lC U L2d is in n, then L L(D) for some deterministic

finite delay fn-machine D. Say D is of delay t. Because the prefixes of L are all in
L2, as long as D hasn’t "learned" that it is outside L (that is, as long as D reads
initial subwords of any member of L1), D must be prepared to receive d and wipe
out its pds. Since D is of delay t, it can use at most 2t + 2 jump instructions after
reading d (it must process d and the endmarker $ in at most 2t + 2 steps). Thus,
while reading any word in Init L1, the pds contents of D must be of the form

B lY 1B2Y2 BlYl
for/__< 2t + 2, Bie Fn, yie(F {B})*, =< __< I. In particular, this implies that
if the pds contents can be factored as z Zl, where each zj contains all n symbols
off (so zj(F {A})*, =< _< n), then/_< 2t + 2.

Let k 2t + 2. The natural first thought is to construct a deterministic
finite delay fn,k,-machine D to imitate D on E*c and so accept L The pew

machine would recode the first n symbols on the pds into F 1, use A when
n symbols have been used, then recode again. At most k disjoint sections on the
pds can contain all n symbols, so D can remember all k recodings in its finite
state control. There is, however, a difficulty in this construction. D must know at
all times how many An’s it has on the pds and how many kinds of symbols follow
the last An. But with no ability to "mark" pds symbols, D can lose track of this
when erasing. Worse yet, when a "jump" is executed, D doesn’t know how many
or which symbols are wiped out--so, for example, E1 could erase several An’s
without D’s being the wiser.

So we let k (kl + 1)(n + 1), construct as a deterministic finite delay
fn,k-machine and use the extra An’s allotted as markers. Call a part of the pds of
D containing all n symbols a "section". Each section will be marked in D by
AnAnAIA2... An_l; within a section, the first time symbol A appears and is
encoded by Aj is marked by AjAnA 1A2 A 1" Thus when D applies, say, Ej,
it will jump either to an "ordinary" A or to one within a marker. Which case
occurs can be determined by examining up to n symbols on the pds. If, for ex-
ample, D finds AnAnA1 Aj_ below, it knows that it must execute another Ej,
and it will then be in the section below, where a different coding may obtain. This
will cause at most n extra jumps, so D will still be finite delay.

Thus the actions of D may be roughly sketched below; the full construction
is exceedingly long and would not aid the reader’s understanding.

1. simulates D on input 2;*; when it reaches its endmarker, $, it simulates
D on c$. IfD adds symbols to the pds on c$, D carries out this part of the simulation
in its finite state control alone.

2. When D puts down its first symbol, say A3, D places A1AnA A on
its pds and remembers that in this section, A is A3. Subsequent appearances of
A3 in this section are simply encoded as A1. The next symbol to be used by D,
say A4, is recorded by/ as AzAnA1... A and subsequently as A2, and D
remembers the encoding" "A 2 is A4". During this procedure, D knows which
section it is dealing with and how many distinct symbols have appeared.

o Init L {wl:ly, wy L}.

JUMP PDA’S 19

3. Before each simulation of a step of D, if the top symbol of D is A,_ 1, D
examines the top n + symbols to see if they are AsA,A A,_ if not, D acts
like D decoding A,_ if it is, it decodes A to simulate D.

4. When the nth symbol within a section appears--say A2--D marks it as

A,A,A1 A,_ and remembers that a section has been completed in which A,
is A2 Subsequent appearances of A 2 will not be encoded as A,, for now the count
of symbol types begins anew; if A2 appears again as the ith type, < n, it will be
encoded as AiA,A A,_ 1.

5. If D ever completes k + sections, it blocks.
6. If D wishes to execute an instruction E but A has not appeared in this

section, there are three possibilities. If the current section is the first one, D blocks
since there is no A on the pds of D. If there is a complete section below in which
A was not the nth symbol, D executes the jump E, until the top symbol is A, (at
most n jumps are needed) and then executes one more E, (to erase A,); now
it proceeds as in step 7, knowing that it is in the section below. If there is a com-
plete section below in which A was the nth symbol, then D jumps through
A,A,A1 A,_ as described above and resumes simulating D.

7. If D wishes to execute an instruction E where A is encoded by D in this
(incomplete) section as A i, # n, then D first executes Ei. Next D checks to see if
the top of the pds is of the form AkA.A Ai_ 1. If it is not, D restores these +
symbols and proceeds as before in the knowledge that the right jump has been
made, and the section and encoding within the section is unchanged. If the top,
however, is AkA,,A Ai_ 1, clearly n > k i. If k # i, then D executes another

Ei jump, and repeats step 7, knowing now that the remainder of this section con-
tains exactly k symbols; coding for the other n k symbols may be changed
in accordance with step 2. If the top is AiA,A A_ 1, D removes it and resumes
simulating D, knowing that the current section has exactly symbol types.

8. If D is to execute E where A, currently encodes As, D executes E, until it
has A, as top symbol, then erases A, and resumes simulating D, knowing it is in
the section below. Note that since each section contains appearances of all n
symbols, the procedures in steps 6, 7 and 8 require fewer than n2 steps, so is
still finite delay.

Thus L1 L(D) (n,k as claimed. Yl
Now observe that IAk g,,k is closed under union with regular sets. If cg, is

closed under union with regular sets, it must contain Lc [A E*d whenever it con-
tains L __. E* and c, d E, so cg,

_
[A cg,,k" Thus we have the following corollary.

COROLLARY 1. For n >= 2, qY, is closed under union with regular sets if and only
if qY Ukcg,,k.

"Since cg,+ 1,1 contains the closure of cg, under union with regular sets, we
have another corollary.

COROLLARY 2. For n >= 2, cg, cg,+ 1,1 if and only if ,+ 1,1 Uk cg,,k cg,.
Now

L,+ f"l (A,+ 1E,*{fi-,+ 1,E,+ 1}) A,+ 1L,,+ U A.+ Init L.E,+ 1,

so we also have the following.
COROLLARY 3. For n >= 2, if L.+ g., then L. U .,k"

120 s.A. GREIBACH

So we can conclude that L3 is not in cg
2 because L2 is not in -Jk (n,k" How-

ever, to show that L, is not in cg
3 requires us to first establish that L3 is not in

Uk rga,k. The next lemma does this for us. It shows that if L, is not in Uk ,,k,
then L,+ is not in Uk cg,+ 1,k and c,+ 1,k rg,+ 1,k+ for k >__ 1.

The following companion lemma to Lemma 3.1 uses a dichotomy argument
similar to those in [26], [27] and [28], but with a twist to take care of the fact
that we are dealing here with deterministic systems. The idea behind the proof is
quite transparent, but the detailed verification is tedious, relying heavily on
special properties of Dyck sets and on Ogden’s lemma for deterministic pda’s
[29]. The interested reader will find the proof in the Appendix.

LEMMA 3.2. Let p >__ 1, n => 2, k __> 1, L
_

E* and c, , and d be symbols not in
Z U Z,. Let L {xwzcixz Init Lp, w L} U {xwzdixz Lp, w L}. IlL is
in cg. + 1,k + 1, then either Lp is in [_J, cg.,, or L is in cg. +

Finally we establish our main hierarchy result.
THEOREM 3.1. For all n >_ 2, k >__ 1, I.J, cg., cg. cg.+ 1,1, and C., Cn,k+

and L.. U., c.
Proof. These results have been already established for n 2 and all k.

Corollary 2 of Lemma 3.1 tells us that U, cg.,, 4: off. implies . va .+ 1,1. Thus we
need only show by induction on n and k that L. 6 . U .,. and off., + -Suppose we have shown this for some n >_ 2 and all k. Now we consider
n + _> 3. We define a series of regular sets Rk for k __> 0 and show that
f’l Ro6.+1,1- off., and show by induction on k that L.+I f’l

cg.+ 1,k. This clearly will complete the proof.
Let

Ro a.+ 1E.*{fi.+ 1, E.+I },
and for k 1, let

Now

R a.+ 1E. Rk- 152n + 1,

L.+ f’) Ro a.+ 1L.fi.+ U a.+ Init L.E.+ 1,

so if L.+ f) R0 e ., then a.+ 1L. e U .,, by Lemma 3.1. Since U ., is an
AFDL, it also contains L. (by Prop. 2.1), which contradicts the induction
hypothesis. So L.+

To show by induction on k that L.+I fl Rk e cg.+ 1,k+1 .+ 1,k, we notice
that each word w in L.+I f’l R, contains exactly + occurrences of a.+l, one
of which starts w, and exactly + occurrences of 2.+1 or E.+I, one of which
ends w. Thus there is a gsm M such that

M- I(L.+ fq R) L,

where

L {xCwCyclw L.+ fq Rk- 1, xy e Init L.}

U {xwydlw e L,+ 1"1 R_ 1, xy e L,}.

JUMP PDA’S 121

If L.+I f’l Rk is in c.+ 1,k, so is L, since .+ 1,k is an AFDL. Since
Lemma 3.2 implies that L.+I f3 Rk-1 is in .+1,k-1. Hence L.+I f3 Rk-1

(-n + 1,k- implies L, + fl R q c + 1,k, []

COROLLARY. For n >_ 1, cg, is not closed under union with regular sets.
The next corollary is important enough to state as a theorem.
TI-mOREM 3.2. The family of deterministic context-free languages is not a

principal AFDL.

4. Conclusions and open problems. We have shown that the deterministic
context-free languages do not form a principal AFDL, although the family of
context-free languages is a principal AFDL [20].

We have defined acceptance by empty store and final state. If ’, is the family
of languages accepted by final state along by f,-machines, clearly , _

cg,,_
cg,+ 1,1. Since cg, is not closed under union with regular sets, but c,, obviously

is, it follows that cg,, # cg,; the reader may use the methods of this paper to show
that cg,, cg,+ 1,1. Thus the fact that cg,,

_
cg,+ 1,1 cg,+ - cg,,+ shows that we

get a similar, though not identical, hierarchy if we consider acceptance by final
state alone. (If we define cg, and cg, analogously, we can also show thatn,k

5’,,k cg,,k+ Cg,,k+ and cg, U k cg,,k, of course cg cg,.) So our results are
valid under either interpretation; they appear to the author somewhat easier to
obtain using ,.

If we let , be the family of languages accepted by deterministic finite delay
n tab tabulator machines in the sense of Cole [8], one can use the methods of
this paper to show that , ,, c,+ 2,1 and that ,, and ,+ are incomparable.
Again this establishes the , hierarchy since ,+ [8]. This approach seems
no simpler than the direct proof that , cg,+ For example, cg, because

is closed under union with regular languages but cg, is not; to show L,+
e ,+ is at least as tedious as showing L,+ cg,+ cg,.

It is also open whether the family of realtime context-free languages or the
various c,, cg,, or oK,,k are principal AFDL’s. Again we conjecture that they are
not. One could ask similar questions about deterministic stack [30], checking
automata [27], or nested stack [31] languages and expect similar results. For
example, one would expect that deterministic finite delay stack automata with
jumps would lead to similar hierarchies.

Two rather more interesting questions suggested by our results are whether
similar "jump" hierarchies exist for single tape Turing machines, and what an
appropriate algebraic structure theory for the deterministic context-free languages
would be.

Suppose we consider deterministic finite delay machines with one Turing
tape as working tape and add some instructions of the form J(A) or Jn(A)--jump
to the first A to the left or the right. Do we get a hierarchy by restricting the types
(i.e., the symbol A jumped to) of jumps or the number of jumps performed? An
analogue of Lemma 3.1 seems plausible for Turing machines, but Lemma 3.2
appears harder. For multitape Turing machines, the extra speed afforded by any
fixed number of tabs can be achieved without tabs by adding extra tapes [33]; to
the best of the author’s knowledge this is the best result along these lines to date.

122 s.A. GREIBACH

The results of this paper and of [6] make it apparent that AFDL’s are not a
sufficient framework for studying the structure of the deterministic context-free
languages. It might be useful, for example, to find a reasonable set of operations
(9 such that c# is the least (9-closed family containing, say, the Dyck sets. A similar
question concerns building up deterministic context-free languages frorn regular
sets without going out of c#--finding an analogue to nested iterated substitution
as discussed in [11].

Appendix. In this section we give the proof of Lemma 3.2. First, however,
we need some more notation and a technical lemma regarding Dyck sets with
wipeouts. For w in 2,*, let #(w) be the smallest x in 2;,* with p(w) * x. The usual
arguments regarding Dyck sets show that p(w) is uniquely defined. Let
v(w) max {l#(x)l :ly, w xy}.

We need a lemma which says that if we "pinch out" of words in L. subwords
w in L. with v(w) "small", then we can use an inverse gsm mapping to put them
back in place. This is necessary, for it is only a "pinched" version of Lp that we
shall show to be in U .,k.

Note that for and n fixed, the set

R,,t {w e L,lv(w) < t, Iwl 2t}

of words "small" in "height" (v(w) < t) but long in "width" (]w] _>_ 2t) is regular.
In general, an AFDL is not closed under substitution by regular sets; our lemma
shows that in this special case, we can put R,,t back. The reason is that a gsm can
pinch out R,,t. The condition Iwl 2t is necessary because every nonempty
word in L, must contain a subword w with v(w) < t, so we can only eliminate cases
with [w[large.

LEMMA A. Let t, n > 2 and R., {w L. v(w) < t, [w] >__ 2t} and L’., L.
N (2* * *-Z,.R.,t2.). There is a gsm M such that M-l(L.d)c__ L.d and M(L.d)_

L’.,td. Hence if L is any language with L’.,t
_
L c_ L., then L.d M-l(Ld)

and L. is in (L).
Prooj’. The basic idea is that M runs over w in 2.* "pinching out" subwords

in the regular set R., and making sure that M(w) always "climbs" in steps of
exactly t. To this end, M stores #(w) in its finite state control as long as p(w) e Z*,,1,4-
and I(w)l < 2t. If p(w)e Z* and #(w)= uv, where lul- and Iv[+ thenn,+
M outputs u, the first symbols of #(w), stores p(v) and continues computing
l(vz) for new input z. If (w) w’Ei w’ F,* M outputs Ei forgets w’ and com-
putes #(z) for further input z; the justification for this action is that if the output
from or input to M to dat lies in Init L., then M has produced as output an
occurrence of a to match E, and E "jumps over" and cancels w’ in between. If
#(w) w’fi, then M will either output a "garbage" symbol c for w’ va e or output
fii for w’ e. Observe that since e R,,t, e is in L’,,t, so R,, itself will be mapped
into d L’,,d.

Since the construction of M is fairly clean, we give it in full. The state set of
M is

{(STOP)} U {(u)[1 =< [u[=< 2t, ueZ*.,+}

JUMP PDA’S 123

with initial state (e> the input vocabulary is E, 12 {d} and the output vocabulary,
E, 12 {c,d}. The transitions of M are given below, in notation explained in
Definition 2.6.

For =< =< n, state <u>"

(<u>, a,)
f(<ua>, e),

((<va>, u’),

(<u’>, e),

(<u>, ai) (<e>, li)

(<STOP>, c),

(<u>’Ei){((<#(uEi)>’e)’<e>,E,)
((STOP>, d),

((u>, d)
{.((STOP>, c),

((STOP>, b) ((STOP>, c),

lul 2t- 1,

u u’v, lu’l Ivl- t,

U u’ai,

u=u’ak, k#i

#(uEi).,*rl,+
otherwise,

u=e,

all b C Z. (3 {d}.

We leave to the reader the detailed verification that M-l(L,d)
_

L,d and
M(L,d) c L,,td. The points to make are that for u * *,,+ w, z if(<e> w)

(<u>, z) and either w or z is in Init L,, then p(w) p(zu), and that M gives
output in Y* only in blocks of exactly symbols.

LFMMA 3.2. Let p >= 1, n >= 2, L
_

* and c, , and d be symbols not in Z (3 Zp
Let = {xwzclxz Init Lp, w L} {xwzdlxz Lv, w 6 L}. If f, is in
cg,+ 1, + 1, then either Lv is in J ,, or L is in cg,+

Proof. We can clearly assume L # . Suppose L L(D) for a deterministic
finite delay ,+ 1,+ machine D with endmarker $. Consider the behavior of D
on input in Yp*. If D never uses pds symbol A,+ before reading the second ,
we let Wo be any member ofL and construct a deterministic finite delay ,-machine
D1 as follows. Machine D1 receives input in Y;v*{c,d}, and imitates D until it
reads c or d. When it reads either c or d, it imitates D on WoC$ or wod$, respec-
tively. Since IWol + 4 is finite, and D is finite delay, D can remember any further
pds additions in its finite state control. Hence L(D1) Lpd U Init Lvc cg,, so
Lp (.Jk cg,, by Lemma 3.1 and the fact that cg, and (.J ,, are AFDL’s [14].

So now we let D use pds symbol A,+I at least once before the second .
Suppose that xy Init Lp, the pds contents of D is IA,+ after reading x with

1 F,*, and that D does not erase A,+ during the scan of y.
First suppose that for some such x and y and every w in L, D does not erase

this first A,+ during the subsequent scan of w. This means that D has at most
k additional instances of A,+ on its pds during any time in its scan ofw. Hence
we can build a deterministic finite delay ft,+ 1,k-machine D2 to accept cLc. The
machine D2 starts out by storing in its finite state control the pds and state of D
after reading xy. Then it simulates D on input w, w E*; during this time it
does not touch the pds "bottom" stored in its finite state control. Finally, when
D2 sees its endmarker, it simulates D on c$, accepting when D accepts. Since

124 s.A. GREIBACH

xy Init Lp, L(D2) L cn+ 1,k. Because AFDL’s are closed under derivatives,
L is in n+ 1,k.

Thus if L is not in n+ 1.k, whenever the pds of D contains An/ after the scan
of a member of Init Lp, there is some Wo in L such that D erases An+ during the
scan of Wo.

We want to show that in this case, D cannot do much work after using An+ t,

since An+ is erased by Wo, and D only sees subwords with v small. To do so, we
notice that D can be imitated by a deterministic pda with some extra states for
"jumping". Hence we can appeal to a strong form of Ogden’s lemma for deter-
ministic context-free languages obtained by a careful scrutiny of the proof of [27].

Essentially, the result is as follows. There is an integer mo >- 2 with these
properties. Suppose x’ywz is in L(D), the pds contents after reading x’ is A, and
this A is not erased during the scan of y but is erased during the scan ofw. Further,
let [y[>_ mo and z 4: e 4: w. If any mo or more places in y are distinguished, then
one of two situations obtains.

I. We have y yly2Y3 w wiw2w3, Y x, Y2 and Y3 all contain distinguished
positions but no more than mo lie within Y2Y3, and x’yyt2Y3wlWEW3z’ is in L(D)
for all > 0 and for all z’ and w3 such that x yWlWEW3 L(D); further, D does
not erase A while scanning y lyt2Y3

II. We have y YlY2YaY4Y5 where Y3 and either YI and Y2 or Y4 and y
contain distinguished positions but no more than mo lie within Y2YaY4, and
x’y w’ z’y L(D) for all > 0 and for all Ys,yayy5w z and with x’yly2Yayysw z
L(D);further, D does not erase A during the scan of y xfl2YaY4.

In our application, we let x’ be x, and A An+ , w be w0 and let
z zld Ed where x deposits pds contents lAn+ An+ is not erased during
the scan of y but is erased during the scan of Wo, and zl Ep*,_ is such that
xyzt Lp. We want to show that I#(u)l < mo for any subword u of y.

First suppose that y UlBlUEBEU3 Bmtlm+ for m _> too, B,..., B,,
ff Ep, + and t(Blu2 Bin) B B,, that is, y has a subword with/ "positive"
(in E,+) and of size mo or greater. Then u2, "", Ume Lp. Let y’ ulBltt2 Bm.
Since D does not erase An+ during the scan of y’, it does erase it during Wo
for some wo 6 L. Let z 6 E’,_ be such that xy’z Lp, call the Bj distinguished,
and apply Ogden’s lemma to xy’wozd

_
L(D).

If case obtains, y’= Y lYEY3, w0--WlW2W3, where Y l,Y2 and Y3 all
contain Bj’s and Cxyly2Y3WlWt2W3zldL(D) for all l>_ 0. So xyyy3z

_
Lp.

But zl is in Ep*,_, and Y2 and Y3 lie within the Bj, so Ig(Y)l l, and Y3Zl does not
contain any Ek which can "jump" over y. This is a contradiction of the definition
of Lp.

So we must have case II. In this case, y’ y IY2Y3Y4Ys, Y l, Y2 and Y3 contain
Bj’s or Y3 Y4 and Y5 contain Bj’s and xyly2y l,3yyswozad L(D) and
xyay2Y3yysZ Lp for all >__ 0 and Y5 with xyy2Y3y,ysz in Lp. In particular,
we can have y’sz E,_. Now y’sz contains some k canceled by an a B in
Y2 or y, and so l(xyly3y’zl) e, a contradiction.

Thus y cannot have a subword u with/(u) e Ep*,+ and I(u)l >= mo. Suppose
y has a subword u with I(u)l >_- mo, that is, y uBu2 B,u,+ 1, u Bu2 B,,
#(u) B Bin, m >= mo, and B l, ..., B ,p. Let y’ uu. Again, D does not
erase An/x during y’ but does so during some Wo, Wo L, and we call the B

JUMP PDA’S 125

distinguished and apply Ogden’s lemma to Cxy’woCzld L(D), where xy’z Lp
and z Zp*,_. In case I, we have y’ YlY2Y3, Yl, Y2 and Y3 contain B s and, as
before, xyly’y3zl

_
Lp. Now if Y2 contains B .,p,_ [,.J Ep, (i.e., B is an k or

Ek) and Ixyll + 1, then B is not canceled within Y2Y2, and so l(xyly2) Zp*,+,
a contradiction. Suppose this does not occur. Then Y2 has a B ak which is not
canceled or "jumped" within ylyl2 Now Y3 may contain an Ek which can "jump"
over Y2. In this case we notice that Ogden’s lemma also tells us that A,+ is not
erased during the scan of ylY2 Further, y"= yly will contain a subword v
with la(V)e Zp*,+ and I(v)l >__ m0. So we obtain a contradiction by applying our
previous argument to xy".

Finally, in case II we arrive at y’= YlYzY3Y4Y5 Y’sZ 52’, xyYzY3Y4YsZ
e L for all >__ 0 and either y, Y2 and Y3 or Y3 and y, contain Bj’s. Further, D
does not erase A.+ during the scan ofylyty3Y4. Running through all possibilities,
we either directly contradict the definition of L, (e.g., if Y2 contains a B1 in
Zp,_ U Zp,e and y contains a Bj,) or have a subword v with #(v)eZp*,+ and
I(v)l ->_ mo in y ly,O or in y3y (e.g., if y2 has a Bj in Ep, + and no Bj, in Zp,_ U "p,e
or if Y4 has a Bj in ,p,_ [..J Ep,e) and obtain a contradiction using our previous
argument.

Now there is an integer st such that if lYl > st, and y is in Sub (Lp) and
I/(Y’)I < for each subword y’ of y, then y contains a subword v in Lp with
v(v) < and Ivl >= 2t (e.g., st 4t3). Let mo.

Now we know that if D places A,+ on its pds and then reads y in Ep*, all
before reading the second or erasing A.+I, either the input to date is not in
Init Lp or I/(Y’)I < for each subword y’ or y, and either lyl =< st or y contains

a subword in R,,t. So either D will erase A,/ in a "short" time (before reading
st+ inputs), or it encounters a member of Rn,t.

We construct a deterministic finite delay f,-machine D3 to imitate D as
follows. Let w0 be any member ofL. D3 reads input in CEp* {c, d}. First D3 simulates
D as long as D does not use A,+ on its pds. If D3 reads c or d without using A,+ 1,

it concludes by imitating D on w0c$ or wod$ as D did. However, if D puts
A,+ in its pds, D3"remembers An+ in its finite state control. Then D3 continues
the simulation of D wholly within its finite state control until either (i) it has read
s + 1 input symbols in p, (ii) before s + inputs in p occur, D erases through
A,+ or (iii) before s + inputs in Ep occur, c or d occurs as input. In case .(i),
D3 simply blocks in the knowledge that either it has left Init Lp or else it has
encountered a subword in R,,t. In case (ii), D3 can now resume the direct simula-
tion of D as before, since now D has pds contents in F’. In case (iii), D3 now
concludes by simulating D on w0c$ or CwoCd$ as discussed before;in all cases,
this is what D3 does on encountering input c or d.

Notice that the only blocking situation in D3 not in D is in case (i) above,
which always occurs before the occurrence of c or d. Hence there is some language
L’ Zp* such that L(D3) CL’d U Init L’c. Since D3 always rejects or blocks if
D does, we certainly have L’ Lp. If D3 blocks and D does not, we have (i) above
and know a subword in R,,t has been encountered. Hence Lp,

_
L where Lp,

is defined in Lemma A.

Sub(L) {yl:ix, z, xyz L}.

126 s.A. GREIBACH

By Lemma 3.1, since L(D3)e., L’e Uk cg.,k so L’e Uk cf.,k. But Uk .,k
is an AFDL [14], so by Lemma A, Lp is in Uk .,k, 71

Acknowledgments. An earlier version of this paper appears in [32] together
with material in [20]. The author would like to thank the referees of [32] for
helpful suggestions and for pointing out the close connection with work in [8].

REFERENCES

[1] S. GINSBURG AND S. A. GREIBACH, Determin&tic context-free languages, Information and Control,
9 (1966), pp. 602-648.

[2] S. L. GRAHAM, Extended precedence languages, bounded right context languages, and deterministic
languages, Conf. Record 1970 IEEE lth Annual Sympos. on Switching and Automata
Theory, Santa Monica, California, pp. 175-180.

[3] L. H. HAINES, Generation and recognition offormal languages, Ph.D. thesis, Mass. Inst. of Tech.,
Cambridge, Mass., 1965.

[4] D. E. KNUTH, On the translation oflanguagesfrom left to right, Information and Control, 8 (1965),
pp. 607-639.

[5] I. M. HAVEL, Strict deterministic languages, Ph.D. thesis, Univ. of Calif. at Berkeley, 1971.
[6] S. A. GREIBACH, Characteristic and Ultrarealtime Languages, Information and Control, 18 (1971),

pp. 65-98.
[7] A. J. KORENJAK AND J. E. HOPCROFT, Simple deterministic languages, Conf. Record of IEEE 7th

Annual Sympos. on Switching and Automata Theory, Berkeley, Calif., 1966, pp. 36--46.
[8] STEPHEN V. COLE, Deterministic pushdown store machines and real-time computation, J. Assoc.

Comput. Mach., 18 (1971), pp. 306-328.
[9] R. MCNAUGHTON, Parenthesis grammars, Ibid., 14 (1967), pp. 490-500.

[10] O. J. ROSENKRANTZ AND R. E. STEARNS, Properties of deterministic top down grammars, Infor-
mation and Control, 17 (1970), pp. 226-256.

[11] S. GREIBACH, Full AFLs and nested iterated substitution, Ibid., 16 (1970), pp. 7-35.
12] , An infinite hierarchy of context-free languages, J. Assoc. Comput. Mach., 16 (1969),

Pl. 91-106.
[13] J. GRUSKA, A characterization of context-free languages, J. Comput. System Sci., 5 (1971),

pp. 353-364.
[14] W. J. CHANDLER, Abstract families of deterministic languages, Proc. 1st ACM Conf. on Theory

of Computing, Marina del Rey, Calif., 1969, pp. 21-30.
[15] J. E. HOPCROFT AND J. D. ULLMAN, An approach to a unified theory of automata, Bell System

Tech. J., 46 (1967), pp. 1793-1829.
[16] S. GINSBURG AND S. GREIBACH, Abstract families of languages, Studies in Abstract Families of

Languages, Mem. Amer. Math. Soc., 87 (1969), pp. 1-32.
[17] ., Principal AFL, J. Comput. System Sci., 4 (1970), pp. 308-338.
[18] M. P. SCrIOTZErqBERGER, On context-free languages and pushdown automata, Information and

Control, 6 (1963), pp. 217-255.
[19] , Finite counting automata, Ibid, 5 (1967), pp. 91-107.
[20] S. GREmACH, The hardest context-free language, this Journal, 2 (1973), pp. 304-310.
[21] A. L. ROSENBERG, On the independence of real-time definability and certain structural properties

of context-free languages, J. Assoc. Comput. Mach., 15 (1968), pp. 672-679.
[22] , Real-time definable languages, Ibid., 14 (1967), pp. 645-662.
[23] P. C. FISCHER, private communication.
[24] ., Turing machines with restricted memory access, Information and Control, 9 (1966),

pp. 364-379.
[25] S. GINSURG, S. GREmACH AqD J. HOPCROFa’, PreAFL, Studies in Abstract Families of Languages,

Mem. Amer. Math. Sot., 87 (1969), pp. 41-51.
[26] S. GREmACH, Chains ofFull AFLs, Math. Systems Theory, 14 (1970), pp. 231-242.
[27] , Checking automata and one-way stack languages, J. Comput. System Sci., 3 (1969),

pp. 196-217.

UMP PDA’S 127

[28] Syntactic operators on full semiAFLs, Ibid., 6 (1972), pp. 30-76.
[29] W. F. OGDEY, Intercalculation theorems for pushdown store and stack languages, Ph.D. thesis,

Stanford Univ., Stanford, Calif., 1968.
[30] J. E. HO,CROFa" AND J. D. ULIMAN, Deterministic stack automata and the quotient operator, J.

Comput. System Sci., 2 (1968), pp. 1-12.

[31] A. V. Argo, Nested stack automata, J. Assoc. Comput. Mach., 16 (1969), pp. 383-406.
[32] S. GREIBACH, Jump PDA’s, deterministic context-free languages, principal AFDL’s and poly-

nomial time recognition, Proc. 5th Annual ACM Conf. on Theory of Computing, Austin,
Texas, 1973.

[33] M. J. FIscHz AND A. L. ROSENBERG, Limited random access Turing machines, Proc. 9th Annual
IEEE Sympos. on Switching and Automata Theory, 1968, pp. 356-367.

SlAM J. COMPUT.
Vol. 3, No. 2, June 1974

POLYNOMIALS WITH RATIONAL COEFFICIENTS WHICH
ARE HARD TO COMPUTE*

VOLKER STRASSEN"

Abstract. We present specific polynomials in C[x] with algebraic or rational coefficients which
are hard to compute (even though arbitrary complex numbers are allowed as inputs for the com-

e2=i/2xa a6 22xa We also show that the minimum number ofputation). Examples are =o
arithmetic operations to compute polynomials in C[x] is itself computable. Finally, we study com-

putational complexity in finite-dimensional algebras over an algebraically closed field.
Key words, concrete complexity, polynomial evaluation, rational coefficients, trade-off

1. Introduction. Motzkin [5] and Belaga [1] have shown that the computation
(evaluation) of polynomials eex + + eo e C[x] using infinite-precision arith-
metic "in general" requires d additions/subtractions and d/2 multiplications,
even if arbitrary auxiliary complex numbers can be used without extra cost (the
choice of these numbers--as well as the whole computation--will of course
depend on the polynomial eexe + + o, i.e., on its coefficients; in the literature,
one therefore often speaks of the possibility of "preconditioning" the coefficients,
or of the "preconditioning model" in the terminology of [10, one is simply deal-
ing with computations in C[x] considered as a ring over C U {x}). "In general"
may here be interpreted in two ways:

1. the quoted lower bounds hold for all polynomials of degree d except for
a set of Lebesgue measure 0;

2. they hold for all polynomials with algebraically independent coefficients
(over the rationals).

Since arbitrary polynomials in C[x] of degree d may in fact be computed
with 3d/2 + 2 arithmetical operations (see again Motzkin [5], Belaga [1]), the
first interpretation gives rather precise information on the typical computational
complexity of polynomials of degree d. On the other hand, if one is interested in
the complexity of specific polynomials, the second interpretation applies, and the
information is much less complete: most polynomials occurring in mathematics
or in applications have rational or algebraic coefficients. For such polynomials,
so far only the trivial lower bound log2 d is available.

In the present paper we derive lower bounds for the computational com-
plexity of polynomials with rational or algebraic coefficients. Here are a few
examples: let fl be a computation (for definitions and notation, see [10]) that
computes

22ea2 X
6=0

in the field C(x) over C U {x} (i.e., fl may use division and may fetch arbitrary
complex numbers). Then either fl contains at least d 4 additions/subtractions
and at least (d/2) 2 multiplications/divisions, or the total number of arithmetic
operations in fl is ridiculously large, namely >__d2/log2 d (Cor. 2.12). Thus in view

Received by the editors January 17, 1973, and in final revised form September 21, 1973.
A first version of this paper was written at the Matematisk Institut, University of Aarhus,

Denmark, during the summer 1970. Now at Universitfit Zirich, Zfirich, Switzerland.

128

POLYNOMIALS WITH RATIONAL COEFFICIENTS 129

of the results of Motzkin and Belaga, the above polynomial is practically as hard
to compute as one with algebraically independent coefficients. The intuitive
reason for this is, of course, the tremendous growth rate of the coefficient sequence.
If we moderate this growth rate, we obtain weaker lower bounds. For example:
the total number of arithmetic operations needed for computing

d

Z 22’Xa
6=0

2axis at least v/d/(3 log d) for large d (Cor. 2.11) By contrast, a=o can obviously
be computed with O(log d) operations.

Polynomials with fast growing integer coefficients occur as initial segments
of generating functions in combinatorial mathematics. A slightly different ex-
ample of a polynomial of complexity at least v/d/log d is

d

e2ni/2,X6"
=0

Concerning the proofs, we remark that already the investigations of Motzkin
and Belaga imply the existence of a polynomial in d + indeterminates
P(Yo,’", Y) :/: 0 such that ifP(00,.--, 0) :/= 0, then x + + 0o is hard to
compute (roughly speaking). It seems very difficult to actually exhibit such a
polynomial P. We show, however, with the help of the Dirichlet-Siegel pigeon-
hole principle, that polynomials P exist which have moderate degree and integer
coefficients of absolute value =< 3. Even such fragmentary information yields the
abovementioned lower bounds for the complexity of specific polynomials.

So far we have talked about the results of 2 of this paper. Before turning to
3, let us discuss a somewhat different question in a slightly more general con-

text. Let k be an algebraically closed field, x l, x2, "’, x, indeterminates over k.
We interpret k(x) k(xl,..., x,) as a field over k U {X1, "’", Xn} (see [10]). Let
z be an integer-valued proper operation-time (cost function) for the type of k(x),
which is strictly positive on +, -, *, /. The computational complexity L is a
function from the set of finite subsets of k(x) to N {0, 1, 2,...} (intuitively,
L(F) is the minimal amount of time that is sufficient to evaluate the set of rational
functions F on a computer with a single processor when it takes z(oo) units of
time to perform the operation 09; for details see [10]). We would like to know if
L itself is computable. In other words" is it possible to decide if L(F) < for finite
subsets F of k(x) and N?

We treat this question in more detail, even though the rest of the paper is
logically independent of the following discussion. First we encode the elements
of k(x) into finite sequences over k" we represent rational functions as pairs of
polynomials (this representation is not unique since we do not require that the
polynomials are relatively prime; further, only pairs whose "denominator-
polynomial" is not zero represent rational functions). Let to be a large natural
number. If =< to, then in investigating the problem "L(F) =< t?" we can restrict
our consideration to rational functions which allow a representation by poly-

nomials of degree =<2’. We represent such polynomials by the
2’ + n +
n+l

130 VOLKER STRASSEN

tuples of their coefficients. For M-2. {2to/n+l+n+l} every fkM whose last

M/2 coordinates are not all zero corresponds to a rational function f.
Now we construct for every (t, r) 2 with max {z(+), z(-), z(*), z(/)}

__< =< o a formula t.r(bl, ..., 4r) of the elementary theory of fields (the bp’s
stand for pairwise distinct M-tuples of free variables) such that

Vt <= o Vr Vfl,...,f,kt,
(1.1)

(,(f,..., f)) (f, ..., f are defined and L(,.-., f}) =< t)].

We do this by induction on (t, r) with respect to the lexicographical ordering"

,r(l, "’", (r)" 0 0

,.,(, ..., 4,,)=- o o

and for 0 __< __< to, r > O"

if0 =< =< to,

ift < 0,

r0,

where

permutation
of ,...,r}

Here the qp, ff, always stand for pairwise distinct M-tuples of logical variables.
The expressions ",= 1 + 2, ,=- 2, = *2, ,=/2,, xj, r const." are abbreviations of formulas of the elementary theory of
fields; the exact (and obvious) definition of these formulas is left to the reader.
These formulas should also state that the rational functions are defined and that
in the case of division, the denominator does not vanish.

In order to prove (1.1), one shows first by induction on (t, r) (for __< to)

Vf,..., f e kt,
(st,(f,..., f) fl, ..., f, are defined, and L({j,..., f,}) =< t),

and then by L-induction (see [10]) on the set variable F,

Vt__< o ’q’r Vf,...,j) ekt,
(fx, ..., f, are defined and F {f, ..., f,} and L(F) <= kt,,(f,’", j))).

We apply quantifier-elimination to the formulas ,,(b, ..., b,) (in the theory
of algebraically closed fields; see [9]). This procedure assigns a quantifier-free

POLYNOMIALS WITH RATIONAL COEFFICIENTS 131

formula t,r(ql, "", br) to every (t,r) with =< to such that (, -- ,,) and
therefore

Therefore (1.1) remains valid if we replace, by Nt,. Since quantifier-elimination
and the construction of ,(bx, , b,) are effective procedures, the function

(t, r) ,,(1, "’",)

is computable. Hence if we can decide if a rational expression in f,..., fr kM

vanishes, then we can check for k,,, f, "", f) and hence for L({f,, , f,}) =<
(if the fl, ..., f are originally given as quotients of polynomials of some degree
7, then choose o => max {t, log2 7}).

In particular, this s the case for k C if the coordinates of f, ,j’r are
elements of Q. The computational complexity over C(x) of a system of rational
functions with rational coefficients is therefore a computable function of these
coefficients. If we encode finite subsets F of Q(x) by means of the reduced quotient
representation of rational functions bijectively by natural numbers (F), then L
induces a number theoretic function. This function is recursive.

Of course, the situation is completely different if we replace the computational
complexity over C(x) by the complexity over Q(x). Problem" is the diophantine
relation

(1.2) {((F), t)’L,)(F) <= t}
recursive?

In the discussion above, we can obviously replace the algebraically closed field
k by a real closed field. Further, we can use the depth T instead of L (see [10]).
We can also weaken the assumptions about z (e.g., we can allow z to assume values
in Q’Q-valued operation times with finite range can always be changed to
integer-valued operation times by multiplication with a natural number). Finally,
we can interpret k(x) as a k-field over {x l, "", x,} and choose, e.g., z 1.,/.

Statement (1.1) with ’,, instead of , implies that the set {(fl, ,f,)"
L({f, ,f})__< t} = kur is constructible in the sense of algebraic geometry
(see [6]). In 3 we prove an analogous statement (Thm. 3.1), without using logic,
by means of algebraic geometry; we apply the theorem of Chevalley ([6, p. 97])
instead of quantifier-elimination (which we could have used as well). The situation
in 3 differs from the previous discussion as follows"
1. Division is not allowed, hence k(x) simplifies to k[x].
2. k[x] is replaced by k[x]/(x,..., x,)t. (x l, "", x,)t denotes the ideal which is

generated by the monomials of degree M (since M can be chosen to be
arbitrarily large, this does not restrict generality).

3. Besides k[x]/(x,..., x,)M, arbitrary finite-dimensional k-rings A are con-
sidered (which do not have to be commutative nor associative); these rings
are interpreted as k-rings over a given system of generators.

4. The operation time is z t./.
The encoding of A does not create difficulties" A is a finite dimensional k-

vector space and therefore an affine space in the sense of algebraic geometry.

132 VOLKER STRASSEN

After showing that the set

{(a,,...,G)’L({a,,...,G})=< t} cA

is constructible for every r, t, it is desirable to close the set in the sense of the
Zariski topology. We define a new function L from the set of finite subsets of A
to such that

(1.3){(al, a,.)" L({al, ..., a,.}) __< t} {(al, a,.)" L({al, at} <= t}
(overlining denotes closure). If we disregard the difference between (a, ..., a,)
and (ax,..., G}, then L is the largest Zariski-lower-semicontinuous function
=<L. Analogously we define L(F mod E) in terms of L(F mod E) (see [10]) by
forming the closure with respect to F. L(. mod .) has again the formal properties
of L, i.e., L is a relative L-bound (Thm. 3.4). Theorem 3.5 is a general analogue
of Theorem of Paterson-Stockmeyer [7].

L is more manageable than L" e.g., the knowledge of L is equivalent to the
knowledge of the formulas ,.,(bl, .", b,) or the constructible sets defined by
them, whereas L is known if the much simpler closed sets (1.3) or the corres-
ponding polynomial ideals are known. We will denote these polynomial ideals
by J(t).

In analogy with 2, we show in 3 that for k O, the ideal J,(t) contains a
nonzero form of relatively small degree with integer coefficients which have
absolute value __< 3. This yields, e.g., the following lower bounds" if we interpret
C[x] as a C-ring over {x}, then for large d,

d 11’3,(1.4) L * e2" 2x >-d’=0

(1.5) L * 2x >d6=0

and

(see Corollary 3.7).
The lower bound (1.6) is of optimal order as follows from Paterson-Stock-

meyer [7, Thm. 4]. The existence of polynomials of degree d with integer co-
efficients which require at least nonscalar multiplications for their com-
putation is already proved in that paper [7, Thm. 1].

The emphasis of 3 is on general developments. The language is therefore
more abstract than in 2. A reader who is mostly interested in concrete results
may skip Theorems 3.3, 3.4 and 3.5 without logical loss.

The most interesting open problems in the present context are perhaps (i) to
exhibit a "reasonable" polynomial with coefficients 0 or which is hard to
compute, (ii) to derive nontrivial lower bounds for the complexity of initial seg-
ments of the classical power series, e.g., (x6/6 !).

This paper assumes knowledge of[10]. In 3 we also use notions and theorems
of algebraic geometry (see [6, Chap. 1]).

POLYNOMIALS WITH RATIONAL COEFFICIENTS 133

We denote finite sequences (al, ..., ar) by a, Ima stands for {al, ..’,

d(A) is the set of finite subsets of A. N’, N, Z, Q and C stand for the set of positive
natural numbers, nonnegative natural numbers, integers, rational numbers and
complex numbers, respectively. Let x be a real number; exp (x) stands for e
is the greatest integer _<x, Ix is the least integer _>x. If f and g are number-
theoretic functions, then "f(d) < g(d) for d " means that for every > 0,
finallyf(d) < (1 + e)g(d). The abbreviation log always stands for log2.

2. Construction of polynomials over Q which are hard to compute (counting
all operations). We start with preliminaries.

DEVINITIOY 2.1. The height of a polynomial with integer coefficients is the
maximum of the absolute values of the coefficients. The weight of such a poly-
nomial is the sum of the absolute values of the coefficients.

The weight is subadditive and submultiplicative.
LEMMA 2.2 (pigeonhole lemma). Let N > M. M linear forms Z[B 1, "’", Bu],

each of weight <= G, have a common nontrivial zero (bl "’", bN) Z such that

Ibl _-< [GM/(u-M)] + 2
for all i.

Prooj’. See Schneider [8, p. 140].
LENMA 2.3. Let m >= 1, c >= 2, f >_ 4 and q >= 5 be natural numbers, let

z l, "", Zm be indeterminates over 7/and let

Vl Pq e Z/[z1,...

be such that

degree P =< c, weight P __< f
for all . Ifg is a natural number such that

(2.1) gq-m- > cmqq log f,

then there is a nontrivial form H 7/[yl, ..., yq] of degree g and height <= 3 such
that

H(P1, ..., P) 0.

Proof. To show" there are integers bi,,...," (not all 0) such that Ib,...,l _-< 3
and

(2.2)]
i,+...+iq=g

First we replace the bi,,...,’s by indeterminates B,,...,, and consider

Q "= _, Bi,,...,i,P’... P" Z[B, z].
i+ ""+iq=g

Evidently,

and

degree,.Q __< gc,

fg[g + q-weight Q
q--1

134 VOLKER STRASSEN

If we write Q as a polynomial in z 1,..., Zm, then the coefficients are linear forms

Z[B] ofweight=<fg(g+q- gc + m)There are at most such forms. (2.2)
q-1 m

’Ssays that the bi,,...,iq are common zeros of these. The pigeonhole lemma implies
the existence of a nontrivial zero bi,,...,iq with Ibi,,...,i,[< 3 if

g+q-1
> (gc+m)q-1 m

and

(2.3)
g+q-1

q-1

+q- gc+m

< 2(gq-1)-(

The first inequality follows from the second one. The assumptions about m, c, q
and g _>_ 2 (because of (2.1)) imply

gc + m) <_(gc) +
m

and

g+q-1

q-1

Suppose now that (2.3) is false. Then

(fggq)(gc)’+l " 2(g/q)q-’- (gc)m-

and therefore

((gc) + 1)g(log f + q) >__

which can be written as

q-1

(gc) 1,

((gc)m + 1)(g(logf + q) + 1) >= () q-1

This implies (note that g >= 2, c >= 2, log f>= 2, q >= 5)

(gc)mgq log f_>_

This inequality contradicts (2.1).
Let k be a field; k[[x]] is the ring of formal power series in x interpreted as a

ring with division by units over k U {x}. Therefore k[[x]] has the type
n {+,-,,,/} u k U

LEMMA 2.4. Let fl be a D-computation whose execution in k[[x]] yields the
sequence (a, ..., al) of intermediate results. Assume

ai Z OiJXJ"
>=0

POLYNOMIALS WITH RATIONAL COEFFICIENTS 135

Let L(+_ Ifl) u, L(*[fl) --/31, L(/lfl) v2. Put v =/31 "31- v2 and m min {u, 2v}.
Then there are polynomials

V, 7/[z, ..., Zm]

(1__< i=< l,l__< 6<)suchthat

(2.4)
max degree Pi6 =< (u + 1)2Vl(dv2 + 3dv2-1 + + 3d + 2)
l_<6<d

(u + 1)21 + ld,

(2.5)
l<6<d

weight Pi6 < 3"+ 1)2Vl(dV2+"’+ 1) < 2’+ 1)2 1dr2

for 1 <_ <= l, d >- 5, and there are Y 1,"" m, 2i " k such that 2 4:0 and

forl il,6 1.
Proof. First we prove the lemma with 2v instead of m by induction on

arranging 2i for all i. The initial step of the induction is obvious (empty com-
putation). Let fl (ill,.--, fib). By the induction hypothesis, there are P6 for

__< =< l- 1, =< 6 < , having the desired properties.
If o e k, then we set P6 0 for all 6.
Ifoh=x,thenwesetPl= landP6=0for6> 1.
If fll (-+, i, j), then we set Pl6 Pi6 q" Pj6"
If fl (*, i,j), then we define the P6’s by

(2.6)

Z2v-1 -[- Z Pi6(Zl’ Z2v-2)x6)(Z2v -[- Z Pj6(ZI’
6>=1

Z2v_ Z2v -[- Pl6(Z1, Z2v)X6.

Further, we set 2.-1 OiO, 2v OjO"

If 1 (/, i, j) then we define the P’s by

z_ + P(z, ..., z._Ix / 1/Z2v "-[- 6>=1 Pj6(z1, z2u-2)Z6)
Z2v_ lZ2v -[- Pl6(Z1, z2v)x6.

The P6’s are integer polynomials because of

(2.7)
I/Z2v ..[._ Pj6x6 Z2vrZ>_O --Z2u62>>_1PJ6X6

6>_1

Further, we set V2-1 0, 72v 1/Ojo"
It is not difficult to see that the P6’s have the desired properties; we only

show how to estimate degree and weight in the case of division. (2.6) and (2.7)

136 VOLKER STRASSEN

imply

z2 + Pi6x6 z2 z2 Pi6x6 + z2 z2 z2 Pi6x6
6--1 o’-0 6"-1 6-1

d

=- z2v_ lz2o + Pl6X6 (mod xd+ 1).
6=1

The bound for the degree follows immediately. If = weight Pi6 =< and

=1 weight Pi6 < for some => 3, then

weightP6 + 1= weight z._lz2 + P6x6

6=1 6=1

d- td+
<_ , + <_+ <_ 3t

=o -t-1

The induction step for the weight follows. We now prove the lemma with u instead
of m. For simplicity, we assume that a - 0 for all (it should not cause any prob-
lems for the reader to drop this assumption). Then every a can be written as

ai Z i6X6, i6 O.

We construct not only the polynomials P6 for 6 _>_ 1, but also polynomials Po
with integer coefficients such that (2.4) and (2.5) are satisfied with maxo_<6_< and
]O_<6_<d" We also achieve that

Pio Pi,6i-1 O, Pi6i 1.

Obviously, this forces 2 i6,. The proof goes again by induction on I.
If (D E k {0}, then we set Po and P6 0 for 6 > 0.
If o9 x, then we set PI and P6 0 for 6 4: 1.
If l (*, i,j), then we define the Pl6’S by

6>O 6>0 6>0

If/3 (/, i, j), then we define the P’s by

/ 6>_0 6>__0

Since a is a finit, we have io g: 0 and hence Pio 1. Therefore the P6’s have
integer coefficients.

If fit (+, i, j) then we distinguish 3 cases.
Case 1.6 6j fit. We define the Pl6’S by

z,, P,a(z1, Zu-1)X6 + (1 z,) Pj6(z,, z l)x6
6>0 6>0

Z Pl6(Zl, zu)X6.
6>0

Then Pa 0 for 6 < 6t and P6, 1. Furthermore, we set

(the denominator is 16, and therefore 4:0).

POLYNOMIALS WITH RATIONAL COEFFICIENTS 137

Case 2. c5 6j < 6. Then
and define the remaining Pt6’s by

Oj6 We set P6 0 for 6 < 6t, P6, =1,

Furthermore, we set
Case 3.6 # 6j, say 6 < 6j. Then 6 6g. We define the P6’s by

6>_0 >__o 6>_0

Again Po 0 for 6 < 6 and P6, 1. Furthermore, we set /, aj6j/6,. The
case fl (-,i,j) is treated analogously. The proof that the P6’s possess the
desired properties goes along the lines of the first part of this proof.

THEOREM 2.5. Let fl compute
d

a %x 0% e k
6=0

in k(x) interpreted as afield over k {x}. Let L(+_]fl) u > O, L(*/]fl) v > O,

m min {u, 2v}, S--U+V.

Let q >= 5, and let 61,...,
natural number such that

(2.8)

be pairwise distinct natural numbers <=d. If g is a

gq-m-2 > dstm+ 1)qq,

then there is a nontrivial form H Z/[y l,

that
y] of degree g and height <= 3 such

H(a,, ..., a6q) 0"1

Proof. We can assume without loss of generality that fl is executable and
that k has infinite degree of transcendence over its prime field. Let (al, ...,
be the sequence of results of fl, a k(x). In order to simplify the argument, we
assume a at. Let 0 e k be transcendental over , ..., ad and be different from
the zeros and poles of the nontrivial a. Then we can develop each a as a formal
power series in x 0:

ai= o%(x- 0)6

For a # 0 we have OiO 7 0. If we interpret the ring k[[x 0]] of formal power
series as a ring with division by units over k U {x}, then fl is executable in this
ring and has the sequence (a, ..., al) of results. Therefore we can apply Lemma 2.4
(with x- 0 instead of x). Lemma 2.4 implies the existence of polynomials
P, ..., Pq e Z/[Z l, Zm] and Y l, Ym, 2 e k with 2 # 0 such that

degree P <__ 2(u + 1)d __< ds,
weight P < 22u+ 1)dr 2as

Obviously the theorem will only be relevant for q > m + 2.

138 VOLKER STRASSEN

(the right inequalities follow from d >__ q >__ 5 and u _> 1). If we set c ds,f 2as

then by (2.8), -,,,- 2 > cmg log f
By Lemma 2.3, there is a nontrivial form H 7/[yl, ..., y] of degree g and height
< 3 such that

H(P1, Pq) O,
and therefore

0 H(Ol,,’’’, 016,1

H %0-’ ..., %0-q

The constant term of this polynomial in 0 is H(%,, ..., %). Since 0 is transcen-
dental over al, "’", %, we conclude

H(%,,..., %) 0.

LZMMA 2.6. Let char k {2, 3}, ko prime field of k, ..., rq k, and let g
be a natural number such that

[ko(-r ,.-.,-r)" ko(-rl,...,-r_ 1)] > g

jbr all to. Then there is no form H 7/[yl, yq], H :/: 0 of degree g and height
<_ 3 such that

H(r 1’ T,q) O.

Proof. Assume there is such a form. Let be the image of H under the
canonical homomorphism 7/[y, ..., yq] -- ko[Yl, Yq]. Since char k {2, 3}
and height H __< 3,/ 4: 0. Choose x such that

/3(0

but

B(271 ’/S:_ 1’ Y:’ Y + 1’ Yq) O.

We interpret/(1, "’", -1, Y, Yx+l, "’", Yq) as a polynomial in Y+I, "’", Yq
with coefficients sko(:l, "’", - 1)[Yk]. Let Q be a nonvanishing coefficient. Then
Q(r) 0, and degree Q =< degree H g, and therefore

[ko(qT1 ,’’’’ T)" ko(T1 ’’’’’ 27c-1)] g,

which is a contradiction.
COROLLARY 2.7. Let fl compute

d

a exp (2rci/2)x
=0

in thefield C(x)over C U {x}. If we set L(+_lfl) u, L(*/lfl) v, m min {u, 2v},
s u + v, then

s(m + 2) > d/log d

for d . In particular, s > w/d/log d for large d.

POLYNOMIALS WITH RATIONAL COEFFICIENTS 139

Proof. Let

exp (2ni/2),

Id/((log d)2 + 3)J,

/([log d)2 + 2),

[(log d)2].

/= 1,...,q,

Then

2-a_

[Q(a,,’",a)’Q(a,,’",a_,)]= 2a, -1

which is >g for all/. Lemma 2.6 and Theorem 2.5 imply

g-m-2 _<_ d,,,+ q.
The assertion follows by substituting.

COROLLARY 2.8. Let fl compute
d

a exp (2ni/2a3)x
6=0

in the field C(x) over C U {x}. Then for large d, either

rn > d/5,

or

S > d2/(5 log d).

(We use the notation of Corollary 2.7.)
Proof. Let

a exp (2ni/23)
q Ld/41

i-(4xd)/3

g 22-4.

a3 a3_l 4/62 --((4(/- 1)d2) 1/3 -+- 1)3

>- 4d- 3d2- 3d-

> d2 4d

63x >dZ-4d,

Then

Since

and

forK> 1,

for/ 1,

40 VOLKER STRASSEN

we infer

IK>g for allx.

Lemma 2.6 and Theorem 2.5 imply

g-,,- 2 dt,,+)qq.

The assertion follows easily.
LEMMA 2.9. (See Schneider 1-8, 5] .) Let

Q= ayje77[y]
1=0

with (l : 0 and

Then]br any root z e C of Q,
lal <= hc- for all j.

I1 (h + 1)c.

Proof. If Izl <- c, then we have nothing to prove. Therefore assume I1 > c.
l-1

{Tl"1-- E (Tj"j
j=O

implies
l-1

Iml Ijlll
j=O

l-1

<_ hct (ll/c)
j=0

hl(l’Cl/c)l/((l’cl/ 1),

which in turn implies the assertion.
LEMMA 2.10. Let r x, "", rq 7/, q >= 5, and g N, g >= 3, with

and

[Zll > 4

Then there is no Jbrm H 7/[yl, yq], H # O, of degree g and height <= 3 such
that

H(’c z,) O.

Proof. Assume there is such a form. Choose x such that

H()= 0Zl zr, Yr+ 1, Yq

but

H(z "c,,_ y,,, yq) =/= O.

POLYNOMIALS WITH RATIONAL COEFFICIENTS 141

We interpret H(z, ..., z_ , y, ..., yq) as a polynomial in y+, ..., yq with
coefficients in 7/[y]. Let Q be a nonvanishing coefficient. The coefficients of Q
are polynomials with integer coefficients in z,..., z_ of degree __<g and of
height =< 3. Therefore

height Q =< 1 g + tc

to-

if tc 1,

for c > 1.

Q(z) is equal to zero. By Lemma 2.9 (with c 1, h height Q), we infer

{ if X= 1,
Izl_-<heightQ+ =< g if x>qzx-

This contradicts the assumptions about
COROLLARY 2.11. Let fl compute

d

a 22x
6=0

in the field C(x) over C U {x}. We set u L(+_ Ifl), v L(*/lfl), m min {u, 2v},
s=u + v. Then

s(m + 2) > d/(3 log d)

for d . In particular, s >2 , /(=31og d) for large d.
Proof. Lete > 0,0 2 [d/(logd)2j,6 tcL(logd)2j,g [d(1-e)logdj.

Then for large d,

161 > Iq6_ (x > 1).

Lemma 2.10 and Theorem 2.5 imply

Substitution yields s(m + 2) > (1 e)d/log d. The assertion follows since , may
be arbitrarily small.

COROLLARY 2.12. Let fl compute
d

a 226’tx
6=0

in the field C(x) ov.er C (.J {x }. Then for large d, either

re>d-4

s > dZ/log d.

(We used the notations of the preceding corollary).
22,a3Proof. Let o ,6 x, q d, g 2a3-a. Then for large d,

](XI] > 4

142 VOLKER STRASSEN

and
I1 > Iq- (x > 1)

Lemma 2.10 and Theorem 2.5 imply

gq 2 <____ dst + qq
By substituting and taking logarithms, we get

d4 d3 d log d <= (s log d + d3 d2)(m -+- 2).

If s =< d2/log d, then m => d 4.
If we do not permit divisions, then the proofs are simpler and the results

somewhat sharper. If one is only interested in s, i.e., in L(II), then one can
eliminate all but one division by computing with unreduced numerators and
denominators and executing one division at the end of the computation.

The proof of Theorem 2.5 shows that one can replace d by max 6 in (2.8).
This implies that every lower bound for the computational complexity of a specific
polynomial a of degree d which is proved using Theorem 2.5 is equally valid for
all polynomials of higher degrees which have a as the initial segment of degree d.

Furthermore, Theorem 2.5 is valid for the values of a polynomial a at the
points 61, -.., 6q (instead of the coefficients a,, ..., aq) if one assumes so 0
and uses a stronger version of (2.8). This follows from the fact that Lemma 2.4
immediately implies a corresponding lemma for the values of the polynomials= aix at the arguments 1, d. Using this version of the lemma, one can
show, for example, that every polynomial which approximates the function
eex- (the generating function of the number of partitions) at the points 1, ..., d
reasonably well has to be hard to compute.

3. The computation of polynomials when linear operations are free. In this
section, ko c k are fields, ko is perfect and k is algebraically closed. Let x, ..., x,
be indeterminates over k. The Galois group Gal(k/ko) operates on k[x]

k[x,..., x,] as well as on k".
We need some definitions and facts about rationality.
R1. Let V be a Zariski-closed subset of k". V is called ko-closed (or defined

over ko) if one of the following equivalent conditions is satisfied"
(i) the ideal of V is generated by polynomials belonging to ko[x];
(ii) V is the set of common zeros of polynomials belonging to ko[x
(iii) V is stable with respect to Gal (k/ko), i.e.,

’Ca Gal (k/ko), aV V.

Proof. (i) (ii) (iii) is trivial. For (iii) (i), see [2, 12, 14] or [4, p. 74].
R2. Let C be a constructible subset of k". We say that C is defin.d over ko if

one of the following equivalent conditions is satisfied:
(i) C is a member of the Boolean algebra generated by the ko-closed sets;
(ii) Vtr Gal (k/ko), trC C.
Proof. (ii) (i): Let C be constructible and invariant with respect to

Gal (k/ko). Let U be the largest subset of C which is open in C, i.e.,

U= U U’.
U’ open in C

POLYNOMIALS WITH RATIONAL COEFFICIENTS 143

C and U are invariant, and therefore C U is invariant. Hence U C (C U)
belongs to the Boolean algebra generated by the ko-closed sets. It is therefore
sufficient to prove (i) for C U instead of C. It is easy to prove that the maximal
dimension of the components of C- U is strictly smaller than the maximal
dimension of the components of C. We can therefore conclude by induction.

R3. Let V be a ko-closed, irreducible subset of k" and let ot V. Then

dim V trdgo ko(0t)

(where trdg stands for transcendence degree).
Proof. Let al, ..., am be algebraically independent over ko and let J be the

ideal of V. It is sufficient to show that X + J,’", Xm + J are algebraically
independent over k in k[xl,..., x,]/J. Assume otherwise. Then there is a non-
trivial P k[xl,..., Xm] which is an element of J. Let P, ..., P be the different
polynomials which are generated by the application of the Galois group on P;
Q 1-]/= 1P. Q is invariant under Gal (k/ko). Since ko is perfect, Q is a non-
trivial polynomial in ko[x,..., Xm] f’) J. In particular, Q(a, ..., am) 0; this
contradicts the algebraic independence of a, ..., a,, over ko.

R4. We say a morphism k" - k" is defined over ko if it is given by polynomials
belonging to ko[Xl, ..., x,].

It is clear how to apply these concepts to a finite-dimensional k-vector space
V if some basis is distinguished. If V is given as scalar extension of a ko-Vector
space Vo, V Vo (R)ko k, then it is easy to prove that the definitions do not depend
on the basis chosen, if one restricts oneself to bases coming from Vo" one says
that V possesses a ko-structure by virtue of the representation V V (R)ko k.

Let Ao be a p-dimensional ko-ring, i.e., a ko-ring (not necessarily commutative)
which has finite dimension p as a ko-Vector space (the associative law is not
essential for the following). All computations will be done in

A Ao (R)o k;

A is interpreted as a k-ring. We use the operation-time z 1(.). We can assume
that Ao is a subset of A. If we neglect the multiplication in A, then A is a k-vector
space with ko-structure.

THEOREM 3.1. Let a (al, "", ar), b (bx, bs), N (s + + 1)(s +
+ r)- s(s + 1). The set

Cr,s(t) "= {(a, b) 6 A AS’L(Im a mod Im b) __< t}
is the projection to A A of the graph of the morphism

qb.A -AS ku

defined over ko In particular, C,s(t is an irreducible constructible subset ofA A
defined over ko Also, for E g(A),

Cr,e(t) "= {a A’L(Im a mod E) __< t}
is irreducible and constructible, and

dim C,E(t) _< N.

If E g(Ao), then C,E(t) is defined over ko

144 VOLKER STRASSEN

Proof. Let (el, "", ep) be a basis of the ko-vector space Ao and therefore also
a basis of the k-vector space A. Then

p

(3.1) eiej Z a]ez, at] e ko
/=1

Further, lety)(i= 1,...,p,j= 1,...,s),z ,z((i=0,...,j- 1,j=s+ 1,
..,s+ t) and zj(i) (i=0,...,s+ t,j=s+ t+ 1,...,s+ t+r) be indeter-
minates over k. Then B A (R)k k[y, z] is a k[y, z]-ring. Again we can assume that
A is a subset of B. (el, "", ep) is then also a basis of the k[y, z]-module B, and
(3.1) is valid in B. We define a sequencefo, ..., fs+,/r of elements ofB (a "generic"
sequence of intermediate results)"

f0 1,
p

fJ= 2 YJ’e, forl_<j=<s,
i=1

and

We will write

(3.1) implies

j-1 j-1

i=0 i=0

s+t

i=0

fors+ <__j<__s+t,

fors + t+ l<=j<=s+t+r.

p

L+,+,= Z PT)e, PT) ek[y,z-] forl =<p =<r.
v=l

(3.2) P koEY, z].

These polynomials define a morphism

.Ar-AS x kU;

we interpret the y’s as coordinate variables ofA and the z’s as coordinate variables
of . In order to prove the first assertion of the theorem, we have to show" let
b l, "’, bs A with

p

b tlJ)e,.
i=1

Then

(3.3) L(a 1, a mod b 1, bs) -<

if and only if there are (i}, (}ek (O__<i__<j- 1, s+ l__<j__<s+ t) and
(i=O,...,s+ t,j=s+ + 1,...,s+ t+r) suchthat

p

ao Z PT)(",

POLYNOMIALS WITH RATIONAL COEFFICIENTS 145

In other words (by the definition of the pv),s) (3.3) is valid iff there are fs+ ,, "’",

fs+, e A,such, that f+](is the product of two k-linear combinations of 1, bl,
b, fs+l fs+-1 <= r <= t) and such that ap is a k-linear combination of
1, bl,..., b,fs+l,’." ,f+, (1 __< p __< r). This is easy to prove as follows" if (3.3)
is valid and iffl computes al, "’, ar modbl, "", bs in A and L(*lfl) t, then let
f+ 1, "’", f+t be the results of the computational steps fli with o9i * in the given
order. On the other hand, if there existf+ 1, "’", fs+t with the desired properties,
then (3.3) is a consequence of the transitivity theorem (using the trivial Lemma 2.1
of [11]). Therefore Cr.s(t) is the projection of graph(b) on A x As. Hence Cr,s(t)
is irreducible and constructible (by the theorem of Chevalley). (3.2) implies that
b is defined over k0; hence graph(b) is stable with respect to Gal (k/ko). Therefore
Cr.s(t) is stable with respect to Gal(k/ko); i.e., Cr.s(t) is defined over k0. Let
E g(A), E {bl, bs} with bj ’:1 rli)ei Then Cr,E(t)= {a’(a, b)s
is evidently the image of the morphism

(3.4) qS(r/,.)’k Ar.
The remaining assertions follow.

DEFINITION 3.2. A function

2(. mod.)’6(A)2 - IN LI
is lower semicontinuous (in the first variable) if the set

{a A "2(Im a mod E) <_ t}
is Zariski-closed for all r IN’, E g(A) and => 0.

THEOREM 3.3. /f
/l(. mod.):g(A)2 ---, IN 1.3 {}

is monotonic in its first argument, then there is a function
k(. mod.)’g(A)2 - IN (_J

such that

(3.5) {a A "k(Im a mod E) =< t} {t A "/1(Im a mod E) __< t}

for all r IN’, E o(A) and >_ O. k is the largest lower semicontinuous function <_ 2.
Proof. We set

(3.5) is equivalent to

Dr(t "= {a 6 Ar’2(Ima modE) =< t}.

k(Im a mod E) min {t :a Dr(t)}
for all a Ar. We can use this line as definition of k, if we know that the right side
depends only on Im a. Therefore it is sufficient to show:

(al at) Dr(t) (al ar) 6 Dr(t)

for arbitrary permutations ,
(al at) Dr(t) (al ar, ar) e Dr+ l(O,

(al, ar)6 Dr(t) (al, ar_l)6 Dr-l(t).

146 VOLKER STRASSEN

The three implications follow from the observation that the set of a Ar, for
which the right sides are valid, is closed and contains Dr(t The remaining asser-
tions are trivial.

THEOREM 3.4. L(. mod. is the largest lower semicontinuous relative L-bound.
Proof. Because of Theorem 3.3 and [10, Thm. 4.8] it suffices to show that L

is a relative L-bound.
Monotonicity. We only prove that it is monotonic in the first argument..
It suffices to show

(3.6) (al, G) Cr,(t) (a a,_) C 1,;(t).
This follows from the fact that

{(al ,..., a)"In1,’", a_ ,) G- 1,(t)}
is closed and contains

Transitivity. First we show that L(. mod D) is an L-bound for the canonical
D-expansion of A. Since L(. mod D) is such an L-bound, the following is valid"

L(F U {oa} mod D) <= L(F U Im a mod D) + z(og)

for adomo, co{0, 1, +, -,,} U k U D. ForF {f,... ,fr}, a (a,..., G),
this means

(f,""", fr, al, G) e Cr + ,D(t) (f,""", f, o)a) Cr + 1,D(t nt- Z(09))

for all t. Evidently o’A - A is a morphism. Therefore,

{(f,,""", fr, a,, G)"(f,, """, fr, con) Cr+ ,,D(t + z(og))}
is a closed set containing C+,(t) and hence containing Cr+.,(t). This means

(f,, fr, a,, G) Cr+,(t) (f,, fr, oa) e Cr+ ,,(t + z(co)),

or in other words,

L(F U lm a mod D) =< =.. L(F U {oa} mod D) =< + z(og).

Since this is valid for all t, we infer

L(F U {oga}.mod D) =< L(F U Im a mod D) + z(o)).

Therefore L(. mod D) is an L-bound mod D. To prove transitivity we can assume
u L(E mod D) < without loss of generality. Then

L(F UEmodD)-u

(fixed E, D) is also an L-bound mod E U D; hence

L(F UEmodD)-u<=L(FmodE UD).

This means (F {f,...,f}, E (b,..., b})

(f,, ,fr) eCr,EuD(t)=(f,, ,fr,b,, "", b)eC,+,o(t + u).

Obviously

{(fl, ,f,)’(fl, ,fr,b,, "", b)eCr+,o(t + u)}

POLYNOMIALS WITH RATIONAL COEFFICIENTS 147

is a closed set containing Cr,eo(t) and therefore Cr,Eo(t). This means

and thus

(f, f) C,Eo(t) = (f, , b, bs) C +,o(t + u)

L(FmodE UD)-< t=>L(F UEmodD)_-< t+u.

Since this is valid for all t, we can infer

L(F U E mod D) =< L(F mod E U D) + L(E mod D).

Normalization. Since L(. mod D) is an L-bound for the canonical D-expansion
of A, we have (putting D Im a)

L(coa mod Im a) _< L(Im a mod Im a) + z(o) _< z(co).

TI-IOREM 3.5. Let a A, b A. If (e, ..., ep) is a ko-basis of Ao and there-
fore a k-basis of A, and if

with J) e k, then

Proof. Let

(3.7)

p

L(Im a mod Im b) _>_ (trdgo ko(t)) ’/2 (r + s).

L(Im a mod Im b) t.

By Theorem 3.1, C,imb(t) is an irreducible subvariety of A, such that

(3.8)
dim Cr,lmb(t) <- (S at- + 1)(s + + r)- s(s + 1)

=< (t + r + s)2

Theorem 3.1 also states that Cr,lmb(t) is stable with respect to Gal (k/ko). Since
the elements aGal(k/ko) are continuous, Cr,imb(t) is also stable. Therefore
Cr,lmb(t is ko-closed. (By 3.7)

a e Cr,lm b(t)"

Using R.3, we get

dim Cr,lmb(t >= trdgko ko(a).

The assertion follows now from (3.8).
In the following, we assume ko Q. Further, let (e, ..., ep) be a basis of

the ko-vector space Ao such that e and

(3.9) 0"(. l). G 7/
,j

(see (3.1)). We set

(3.10) /l "= max Z lal
i,j

148 VOLKER STRASSEN

and assume 2 _>_ 1. Further, let b (b l, ".., bs)eAo, bj ,P’=lqJ)ei with

r/J e . We set

(3.11) 7 "= Z Ir/l
i,j

and assume 7 _>- 1. Using the basis (el, "", ep), we can identify the affine space
A with kpr kp x x kp. If Y 1,’", Ypr are its coordinate variables, then its
coordinate ring is the polynomial ring k[Yl,..’, Yp]. Then C,im,(t) is a closed
irreducible subvariety of kp we denote its ideal by J(t).

THEOREM 3.6. Let r,s >= 1, q >= 5, <= 61,... 6q <= pr; let g be a natural
number such that

(3.12) g-(t++)2 > 2(t+r+)(,+ 1)qq log(2(7 + 1)).
Then there exists a nontrivial jbrm

such that

H e d(t) f-] 7/[y6,,..., y6,]

heightH=< 3, degreeH=g.

Proof. We use the proof of Theorem 3.1. By replacing the yJ) of that proof
by qi), we get polynomials P)01, ")e Q[z]. The construction implies that these
polynomials are elements of 7/[z]. If we set

P(o- 1)p +v p(pV)(,.),

then by (3.4) the systems ofvalues ofP1, Ppr form exactly the set Cr,lml(t c kp.
An element H e 7/[y61, .-., Y6q] is therefore contained in J(t) if and only if

(3.13) H(P,, ..., P) 0.

The construction of the polynomials P)01,’) also yields (the proof goes by
induction on t) that

max degree P)01," =< 2’ +
l<_v<_p

and
P

weight P()Ol," <- 21g(’t(’+ 2))2t-lg 2

V--1

-1

(3.14)

for all p. We can apply Lemma 2.3 with rn N,c 2t+l f 2lg(’t(’+ 1))2t+x

Since (2.1) is a consequence of(3.12), there is a nontrivial form HeT/[y61, ...,
of degree g and height __< 3 satisfying (3.13), i.e., H is an element of J(t).

COROLLARY 3.7. Interpret C[x] as C-ring over {x}. Then for d--. o (.for
large d, respectively)

L *1 6=o exp(2ni/26)x6)d’/3’
(3.15) L

(3.16) L

* Z 22’X6 dl/3
6=0

POLYNOMIALS WITH RATIONAL COEFFICIENTS 149

Proof. Let a C[x] be of degree d. Then

Lct(*la) _-> La(*la mod),

where A C[x]/xa+ 1C[x] is interpreted as a C-ring and is the residue class
of x. Furthermore,

A ([x]/x+ ’Q[x]) (R) oC.
Therefore we can apply Theorem 3.6 with p d + 1, e i- 1,

{10 ifi+j-l=l,az otherwise,

1, s 1, b , and r 1. One concludes now as in the proofs of
Corollaries 2.7, 2.11 and 2.12.

In a similar way, Theorem 3.6 applies to polynomial rings in several variables.

Acknowledgments. Many thanks go to Walter Baur and to the referee for
their careful reading of the paper and their helpful remarks.

REFERENCES

[1] E. G. BELAGA, Some problems involved in the computation of polynomials, Dokl. Akad. Nauk
SSSR, 123 (1958), pp. 775-777.

[2] A. BOREL, Linear Algebraic Groups, W. A. Benjamin, New York, 1969.
[3] J. EvE, The evaluation ofpolynomials, Numer. Math., 6 (1964), pp. 17-21.
[4] S. LANG, Introduction to Algebraic Geometry, Interscience, New York, 1958.
[5] T. S. MOTZCN, Evaluation ofpolynomials and evaluation of rationalfunctions, Bull. Amer. Math.

Soc., 61 (1955), p. 163.
[6] D. MUMVORO, Introduction to Algebraic Geometry, Harvard Lecture Notes.
[7] M. PETERSON aND L. STOCrCMEVER, Bounds on the evaluation timefor rational polynomials, IEEE

Conference Record of the 12th Ann. Sympos. of Switching and Automata Theory, 1971,
pp. 140-143.

[8] T. SCrN.DER, Einfhrung in die Transzendenten Zahlen, Springer-Verlag, Berlin, 1957.
[9] J. R. SHOENELO, Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.

[10] V. STRaSSEN, Berechnung und Programm I, Acta Informat., (1972), pp. 320-335.
[11] ., Vermeidung yon Divisionen, Crelle Journal fiJr die Reine und Angew. Mathematik, 264

(1973), pp. 184-202.

SIAM J. COMPUT.
Vol. 3, No. 2, June 1974

AN ALGORITHM FOR THE COMPUTATION OF LINEAR FORMS*

JOHN E. SAVAGE"

Abstract. Many problems, including matrix-vector multiplication and polynomial evaluation,
involve the computation of linear forms. An algorithm is presented here which offers a substantial

improvement on the conventional algorithm for this problem when the coefficient set is small. In
particular, this implies that every polynomial of degree n with at most distinct coefficients can be
realized with O(n/log n) operations. It is demonstrated that the algorithm is sharp for some problems.

Key words, algorithms, linear forms, matrix multiplication, polynomial evaluation

1. Introduction. How many operations are required to multiply a vector by
a known matrix or evaluate a known polynomial at one point? Such questions
are frequently asked, and Winograd [1 has shown the existence of real matrices
and polynomials (containing indeterminates over the rationals, for example) for
which the standard matrix-vector multiplication algorithm and Horner’s rule for
polynomial evaluation are optimal. That is, n2 real multiplications and n(n 1)
additions are required for some n n matrices to multiply the matrix by an
n-vector, and n multiplications and n additions are required by some polynomials
of degree n to evaluate the polynomial. In this paper, we use an algorithm for the
computation of"linear forms" to show that the n n matrix-vector multiplication
problem and the polynomial evaluation problem can be done with O(n2/logs (n))
and O(n/logs (n)) operations, respectively, when the matrix entries and the poly-
nomial coefficients are known and drawn from a set of size s (even when the
entries and coefficients are variables). These results are obtained by exhibiting
potentially different algorithms for each matrix and each polynomial.

The algorithm presented here for the computation of "linear forms" is very
general and can be applied to many problems including matrix-matrix multi-
plication, the computation of sets of Boolean minterms, of sets of products over a
group, as well as the two problems mentioned above. Applications of this sort
are discussed in 3.
We now define linear forms. Let S and T be sets and let R a "small" finite set

of cardinality]R[s. Let :R S T be any map (call it multiplication) and
let +:T T T be any associative binary operation (call it addition). Then
the problem to be considered is the computation of the m linear forms in
X2 Xn

ai xl ..1._ ai 2 X2 .Af.. ._[_ ai Xn l<=i<=m,

where aij R and xj e S. The elements in R shall be regarded as symbols which

* Received by the editors January 16, 1973, and in final revised form November 1, 1973.
]" The research reported here was completed primarily at the Division of Engineering and Center

for Computer and Information Sciences, Brown University, Providence, Rhode Island, and in part at

the Jet Propulsion Laboratory, Pasadena, California. The Brown portion was supported in part by
National Science Foundation under Grant GJ-32270, and in part by the Advanced Research Projects
Agency of the Department of Defense, which was monitored by U.S. Army Research Office, under
Grant DA-ARO-D-31-124-73-G65. The JPL portion was supported by the National Aeronautics
and Space Administration. Now on leave at the Department of Mathematics, Technological Univer-
sity, Eindhoven, Eindhoven, the Netherlands.

150

COMPUTATION OF LINEAR FORMS 151

may be given any interpretation later. For example, in one interpretation, R
may be a finite subset of the reals and, in another, R may consist of s distinct
variables over a set Q, say.

An algorithm is given in the next section which for each m n matrix of
coefficients A {air evaluates the set LA(X)= {’=1 aOxll <=i<= m} of linear
forms with O(mn/logs (m)) operations, when m is large where s IR]. The con-
ventional direct evaluation of La(x) involves mn multiplications and m(n- 1)
additions, so an improvement is seen when s is small relative to m.

Polynomial evaluation is examined in 4, and the algorithm for linear
forms is combined with a decomposition of a polynomial into a vector-matrix-
vector multiplication to show that every polynomial of degree n whose co-
efficients are taken from a set of s elements can be realized with about / s scalar
multiplications, 2// nonscalar multiplications and O(n/log (n)) additions, when
n is large. The polynomial decomposition is similar to one used by Paterson and
Stockmeyer [2], and it achieves about the same number of nonscalar multi-
plications but uses fewer scalar multiplications and additions.

In 5, a simple counting argument is developed to show that the upper
bounds derived in earlier sections are sharp for matrix-vector multiplications by
"chains", that is, straight-line algorithms.

2. The algorithm. The algorithms for computing L(x), where IRt s, will
be given in terms of an algorithm N’ for the construction of all distinct linear
forms in y l,y2,.--, Yk, with coefficients from R. That is, computes LB(Y),
where B is the s k matrix with s distinct rows and entries from R. The algo-
rithm s for LA(X) will use several versions of M.

The algorithm ’ has two steps. Let R {, z2,-.. Zs}. Then"
Step 1. Form i’Yj (1 =< =< s, _< j =< k).
Step 2. Let S(i i2, il) 0ii Yl -k- Oiz" Y2 "k- 4" Oq, Yl

(1 _< =< , _<_ i_<_ s.)
Each element of LB(Y) is equal to S(il, i2,’", k) for some set {i, i2, ik} .of
not necessarily distinct integers in {1,2, .-., s}. Construct S(i,i2,... it) re-
cursively from

and
S(il) i Y

S(il, i2,"’, il) S(il, i2,"’, it-I) + xi," Yt

for2< l<k.
The first step uses rtB= ks scalar multiplications. Let N(s, l) be the number

of additions to construct all linear forms S(il, i2,’", it)" Then from Step 2 it
follows that

U(s,) 0,

N(s, I) N(s, 1- 1)+s.
From this we conclude that

N(s, l) [(st+)/(s)] (s +) -5. s

>_ s

152 J.E. SAVAGE

for s >- 2 and 2. Therefore, the number an of additions to form Ln(y) satisfies
s __< a, =< s / .

Partition A into

A [B B2 By],
where B1, By- are m x k, Bp is m (n (p 1)k) and p In Similarly,
partition x yl, y2, ..., yV where y" (xtr- 1)k+ 1, "’", X,.k) for =< r _< p and
yP is suitably defined. It follows that

(,) Ax B ly + B2y2 + + Bpyv,
where + denotes column vector addition.

The algorithm a’ for L/t(x) has two steps"
Step 1. Construct Lnr(yr), __< r __< p, using N, that is, identify the linear

forms corresponding to rows of Br and choose the appropriate forms
from those generated by

Step 2. Construct L/t(x) by adding as per (*) above.
The number of multiplications used by a’ is n/t ns. The number of additions

used in Step is no more than pan, and in Step 2 it is no more than m(p- 1).
Therefore, the number of additions used by satisfies

O’A 5 PSk+l + m(p- 1),

where p [n/k]. Ignoring diophantine constraints and with k log (m/log (m)),
we have the following.

THEOREM 1. For each m n matrix A over a finite set R ofcardinality IRI s,
the.m linear forms

LA(X {ail .x + + ai,x." <=iN m}
can be computed with nA l’lS multiplications and O"A -< O(mn/log(m)) additions
when m is large relative to s.

Proof Ignoring diophantine constraints, we have

and sk m/log(m). Therefore,

nm
O"A < (1 + /31)/(1 /32)

logs (m)

where /31 s/log (m) and /32 logs logs (re)/logs (m). If /32 < 1/2, it is easily shown
that (1 -/32)-1 =< + 2/32. Also,

(1 + /31)(1 + 2/32) + 2(/31 + /32)

if/32 < 1/2, which holds for m ->- 16 when s >= 2. It follows that
nm

O’A "< (1 + 2(/3 +/32))log (m)
where m => 16. Since/31 and/32 approach zero with increasing m, the conclusion
of the theorem follows. Q.E.D.

COMPUTATION OF LINEAR FORMS 153

When m >> s, this result represents a distinct improvement over the con-
ventional algorithm for evaluating LA(x), which uses mn scalar multiplications
and m(n 1) additions. It should be noted that the reduction in the number of
additions by a factor of logs (m) obtained with algorithm s follows directly from
a reduction by a factor of about k in algorithm N. The obvious algorithm for
Ln(y) uses ksk additions, but N computes it with no more than Sk+l additions.

Although algorithm s’ (and N) was discovered independently by the author,
it does represent a generalization of an algorithm of Kronrod reported in
Arlazarov, et al. [3]. His result applies to the multiplication of two arbitrary
Boolean matrices. The heart of algorithm s is algorithm N, and this was known
to the author [4] in the context of the calculation of all Boolean minterms in n
variables. This will be discussed in the next section.

3. Applications. In the set LA(X of linear forms, the elements aij and xj are
uninterpreted, as are the operations of multiplication and addition. By attaching
suitable interpretations, it is seen that algorithm s for linear forms has appli-
cations to many different problems.

Several problems to which algorithm s’ may be applied are now described.

3.1. Multiplication of a vector by a known matrix. Let R be a set of s variables
over S, R {z 1,z2,..., Zs}, and let S T {reals}. Let + and. be addition
and multiplication on the reals. Then LA(X represents multiplication of
x (x l, x2, ..’, x,) by a known (but not fixed) matrix A. That is,

LA(X) {Zk, X .ql.. Zki2 X2 -Ji- -[- Zki Xn" <= <= m},
where the m x n matrix of indices {k;} is fixed. For any given matrix {k;}, La(x)
can be computed using ns real multiplications and O(mn/log (m)) real additions.

Independent evaluation of the m forms requires a total of at least m(n 1)
operations for any s, since each form consists of n functionally independent terms.

Special cases.
(i) zi, z/, ..., z are assigned distinct real values;
(ii) s 2, Z 0, z2 1. Then La(x) is a set of subset sums, such as

(X -[-" X3, X2 -[- X3 -[- X4
Note. Concerning (i), Winograd [1] has shown that there exist fixed real

(and unrestricted) rn n matrices and vectors x such that mn real multiplications
and m(n- 1) real addition are required for their computation with "straight-
line" algorithms. Thus, a significant savings is possible if the matrix entries can
assume at most s distinct real values and s is small relative to m.

3.2. Matrix-matrix multiplication, AX, A known. Let R and S be as above,
and let T be the p-fold Cartesian product Qp, Q {reals}. Let. be conventional
scalar multiplication (consisting of p real multiplications), and let + be vector
addition on the reals (consisting of p real additions). Then, La(x) represents
multiplication of the n x p matrix X over the reals by a known (but not fixed)
rn n matrix A. That is,

LA(X) (Zkil ’1 + Zki2 2 -[- + Zki ’n" <= m},
where l denotes the/th row of X and the rn x n matrix of indices {kj} is fixed.

154 J.E. SAVAGE

For any given matrix {kij}, La(x) can be computed using nps real multiplications
and O(mnp/logs (m)) real additions.

Note. When n m p, Strassen’s [5] algorithm for matrix-matrix multi-
plication can be used at the cost of at most (4.7)nlg27 binary operations. As a
consequence, Strassen’s algorithm is asymptotically superior to algorithm for
this problem. However, when s 2, algorithm ’ is the superior algorithm for
n =< 101!! Moral" beware of arguments based upon asymptotics.

3.3. Boolean matrix multiplication. Let R S {0, 1}, T {0, 1} p, let. be
Boolean vector conjunction and let + be Boolean vector disjunction. Then,
LA(X represents the multiplication of a known Boolean m x n matrix A by an
arbitrary Boolean n x p matrix X. That is,

LA(X) {aix 1 -]- ai2 2 + -" ain" n" <= <= m},

where ffl is the/th row of the n p matrix X. The algorithm for computing AX
uses no multiplications and O(mnp/loge (m)) additions.

Note. If A is an arbitrary Boolean matrix and if the selection procedure of
Step of algorithm can be executed without cost, the algorithm of Kronrod [3]
results. The number of operations performed, exclusive of selection, equals that
given above. The Kronrod algorithm uses more operations because of a poor
choice of the parameter k.

3.4. Boolean minterms. Let R S T {0, 1}, let + be Boolean con-

junction, and let. be defined by

j’x, 0 1,

if, a 0,

where denotes the Boolean inverse. Then, La(x represents a set of minterms
such as

{’lX2X3,lX23, X1X2X3}
Note. The set of all 2" distinct minterms, suitably ordered, represents a map

from the binary to positional representation of the integers {0, 1, 2, ..., 2" }.
This map can be realized with at most 2n+l conjunctions and is a map which is
useful in many constructions, such as in [4].

3.5. Products in a group G. Let R {- 1, 0, 1}, S T G, let x x
(raise to a power), and let + be group multiplication. Then LA(X represents a
set of m products of n terms each. For example,

{ab- lcd -1, bc , a- c- d-1}
is such a set, where x
is suppressed.

is the group inverse of x and x is the group identity which

4. Polynomial evaluation. We turn next to the evaluation of polynomials of
degree n. Let

p(x) ao + al X -1- a2 X 2 + -’l" a,. x",

COMPUTATION OF LINEAR FORMS 155

where +,. represent vector addition and scalar multiplication and where x x,
x x * xi- 1, and * represents vector multiplication. Let aie R, x e T and

"R x T--.T,

+’Tx T-T,

"T x T T,

where + and * are associative and * distributes over +. We shall construct an
algorithm for polynomial evaluation which employs algorithm ’ for linear
forms.

Algorithm @ has three steps. Without great loss of generality, let n kl 1,
and assume that a (ao, al, .-’, a,) has entries from a set of size s.

Step 1. Construct x2, x3, x.
Step 2. Construct the k linear forms in 1, x, x2, -.., x-

using algorithm

Step 3. Construct p(x) ro(x) + r (x) * x + + r_ (x) * x- 1)1 using
Horner’s rule.

Let ap denote the number of vector additions used by N, rt, the number of
scalar multiplications and /, the number of vector multiplications. Since the
forms required in Step can be realized with l- vector multiplications and
Step 3 with k such multipications and k additions, we have

crp <= O((n + 1)/log (k)) + k l,

7p Is,

#p=l+k-2,
since kl n + 1. If we ignore diophantine constraints and choose k x//(n + 1),
to minimize/p, we have the following.

THEOREM 2. For each a (ao, a l, ..., a,) R"+ with R a set of cardinality
IRI s, p(x) ao + ax + + x,x" can be evaluated with ap vector additions,
rcp scalar multiplications and lp vector multiplications, where

ap <- O(n/logs (n)),

rcp < sx//n + 1,

#p < 2w/n +1-2,
when n is large relative to s.

Horner’s rule, which is the optimal procedure for evaluating an arbitrary
polynomial on the reals, uses n multiplications and n additions. Even when a
and x assume fixed real values, there exist vectors a and values x for which Horner’s

156 J.E. SAVAGE

rule is still optimal [1]. When the coefficients are drawn from a set of size s, how-
ever, Horner’s rule can be improved upon by a significant factor when n is large
relative to s.

The decomposition of p(x) used by algorithm is very similar to that used
by Paterson and Stockmeyer [2] in their study of polynomials with rational co-
efficients. They have shown that O(x/ vector multiplications are necessary and
sufficient for such polynomials, but their algorithms use O(n) additions. Algorithm

achieves O(x/ vector multiplications but requires only O(n/log (n)) additions
when n is large relative to s. Clearly, algorithm can be applied to any problem
involving polynomial forms.

5. Some lower bounds. The purpose of this section is to demonstrate the
existence of problems for which the performance of algorithm ’ can be improved
upon by at most a constant factor. To do this, we must carefully define the class
of algorithms which are permissible. Then we count the number of algorithms
using C or fewer operations and show that if C is not sufficiently large, not all
problems of a given type (such as matrix-vector multiplication) can be realized
with C or fewer operations.

A chain [3 is a sequence of steps ill, 2,’’’, L of two types, data steps, in
which fli {Yl,Y2, "’", Y, U K(yi K, yi v yj, 4: j and K c Q is a finite set of
constants), or computation steps, in which

fli flj k, j,k <

and "Q Q --, Q denotes an operation in a set f.
Associated with each step fli of a chain is a function fli which is fli if fl is a

data step, and

if [3 is a computation step. Clearly,/. Q" --. Q. A chain fl is said to compute m
functions f, f2, "’", fro, f/’Q"-’ Q if there exists a set of m steps [3il,’",
such that fli, f, <= <= m.

We now derive an upper bound on the number N(C, m, n) of sets ofm functions
{fl, "’", J,} which can be realized by chains with C or fewer computation steps.

LEMMA. N(C, m, n) <= v4v, v C + n + m + IKI + if C >__ If2l >-_ 2.
Proof. A chain will have =< d =< n + [KI data steps, and without loss of

generality, they may be chosen to precede computation steps. Similarly, the
n +]K]

2" +order of their appearance is immaterial, so there are most <
d

ways to arrange the d data steps.
Let the chain have computation steps. Each step may correspond to at

most Ifl operations, and each of the two operands may be one of at most + d
steps. Thus, there are at most]f2]’(t + d)2 ways to assign computation steps and
at most 2"+lKl]flt(t / d)2t chains with d data steps and computation steps. A
set of m functions can be assigned in at most (t + d) ways.
Combining these results, we have that the number of distinct sets of m functions

which can be associated with chains which have C or fewer computation steps is

COMPUTATION OF LINEAR FORMS 157

at most

But

N(C, m, n) =<
n/lKI c

Z Z 2"+l:llnlt(+ d)2’+m
d=l t=l_
(n + IKI)C2"+IKIIIC(C + n + IKI)2c+

(n + IKI)2"+IKI (C + n + IKI)

if C >__ 2, and

Inl c
_

(c + n + IKI)c

if C => Il, from which it follows that

N(C, m, n) _< (C + n + Igl)4c+"+ln ++

wherev=C+n+m+lKI + 1. Q.E.D.
In the interest of deriving a bound quickly, the counting arguments given

above are loose. Nevertheless, the bound can at best be improved to about v.
As seen below, this means a loss of a factor of about 4 in the complexity bound.

Consider the computation of m subset sums of {xl, x2, .", x,}, xi {reals},
as defined in special case (ii) of 3.1. In the chain defined above, let Q {reals}
and let f +, addition on the reals}. There are 2" distinct subset sums, and

the number of sets of m distinct subset sums is the binomial coefficient F

Fix 0 < e < 1. If C, n and m are such that N(C, n,m) <= F-, then there exists

at least one set of m distinct subset sums which require C or more additions.
THEOREM 3. Algorithm 1 is sharp for some problems, that is, there exist prob-

lems, e.g., the computation of m subset sums over the reals, which require
O(mn/log2(m)) operations with any chain or "straight-line" algorithm, when
m O(n).

Proof. Set v’= F1-, where v C + n + m + [K[+ 1. Then N(C,m, n)
__< F 1-. For large F, the solution for v is

v (1/4 In F-)/ln (1/4F-).
Since rn O(n), it can be shown from Stirling’s approximation to factorials and
an examination of the binomial coefficient F that In F is asymptotic to nm(ln s).
From this the conclusion follows. Q.E.D.

The counting argument given above could also be applied to matrix-vector
multiplication (3.1) and to polynomial evaluation on the reals, as described in
4, to show that the upper bounds given for these problems are also sharp.

6. Conclusions. The algorithm presented here for the evaluation of a set of
linear forms derives its importance from the minimal set of conditions required
of the two operations. In fact, the only condition required is that addition be
associative. As a consequence, the algorithm applies to a large class of apparently
disparate problems having in common the fact that they can be represented in
terms of linear forms of this general nature.

158 J.E. SAVAGE

The algorithm allows us to treat two important problems, matrix multi-
plication with a known matrix and polynomial evaluation with a known poly-
nomial. In both cases, an algorithm is constructed which depends explicitly on
the matrix entries and the polynomial coefficients. When the entry set of the
matrix or of the polynomial coefficients is fixed and the dimensions of either
problem are large, a sizable savings in the number of required computations is
obtained.

The generality of the algorithm for evaluation of linear forms suggests that
it may have application to many important problems not mentioned in this
paper.

Acknowledgment. The author acknowledges several important conversations
with Dr. Charles M. Fiduccia which resulted in the generalization and clari-
fication of the principal algorithm for linear forms.

REFERENCES

[1] S. WINOtRAD, On the number of multiplications necessary to compute certain functions, Comm.
Pure and Applied Math., 23 (1970), pp. 165-179.

[2] M. PATERSON ANt L. STOCIIEVER, Bounds on the evaluation time for rational polynomials, Proc.
12th IEEE Symposium on Switching and Automata Theory, 1971, pp. 140-143.

[3] V. L. ARLAZAROV, E. A. DINIC, M. A. KRONROD AND I. A. FARADZEV, On economical construction

of the transitive closure of an oriented graph, Soviet Math. Dokl., 11 (1970), pp. 1209-1210.
[4] J. E. SAVAC;E, Computational work and time onfinite machines, J. Assoc. Comput. Mach. (1972),

p. 673.
[5] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.

SIAM J. COMr’UT.
Vol. 3, No. 3, September 1974

ANALYSIS OF A FEEDBACK SCHEDULER*

Y. S. CHUA" AND A. J. BERNSTEIN

Abstract. A flexible feedback queueing model for a computer system is described. The model
consists of a single server and a queue into which jobs are inserted at positions which are functions
of their attained service. Special cases of the model include both the round robin and the first-come-
first-served disciplines, but a wide variety of other algorithms, having different performance character-
istics, can also be obtained. The model is analyzed using Markovian assumptions, and both the finite
quantum and processor sharing cases are considered. The relationship of the model to system over-
head is also treated.

Key words, scheduling, Markov analysis, feedback, queueing, time-sharing, partial round robin

1. Introduction. During the last decade a considerable amount of work has
been done in developing and analyzing queueing models for time-sharing systems
[8]. Figure shows a general model which consists of a single server that is shared
by a number of customers. A newly arrived customer joins the queue and waits
for his turn to be served. The server follows some decision rules in selecting the
customer that is to be served next. In order to prevent customers requiring large
amounts of service from tying up the server and thus causing delays for other
customers with shorter service times, each customer is served for only a short
period of time (called a quantum) and is asked to rejoin the queue if the service
is not completed within the quantum. A customer thus alternates between waiting
and receiving service until he has accumulated the total amount of service he
requires.

FEEDBACK

ARRIVAL DEPARTURE
QUEUE

FIG. 1. A general feedback queueing model

The set of rules for selecting the customer to.be served next is known as a
scheduling algorithm or a queueing discipline. A customer who is rejoining the
queue to await another quantum of service will be called a feedback.

The scheduling algorithm may be a function of one or more of the following"
1. Externally assigned priorities for the jobs.
2. Amount of service so far accumulated by the jobs.

* Received by the editors August 6, 1973. This work was supported in part by the National Science
Foundation under Grant GJ 28177.

" Department of Mathematical Sciences, University ofNorth Florida, Jacksonville, Florida 32211.
:1: Department of Computer Science, State University of New York at Stony Brook, Stony Brook,

New York 11790.

159

160 Y. S. CHUA AND A. J. BERNSTEIN

3. The waiting times of the jobs.
4. The order of arrival of the jobs.
Jobs arrive in a random manner, each job having a service time which is a

sample from some distribution function. In order to analyze a given queueing
model, the statistics describing the arrival process and the service time dis-
tribution are needed. The result of analysis is usually a function, W(t), giving the
average waiting time a job experiences as a function of its service time t. The
waiting time.for a job is defined as the total amount of time spent by a job waiting
in the queue excluding the time spent fin receiving service. The sum of the waiting
time and the service time for a job is known as the average response time

(1) T(t) W(t) + t.

Many models have been developed and analyzed [8], some treating specific
models like the round robin scheduler [6], [7], and some providing multiple
parameter models like the FBN system [3].

In this report, we develop a multiple parameter queueing model which
covers a wide class of scheduling algorithms. The model bears a strong relation-
ship to the policy driven scheduling algorithm [2] since it involves inserting feed-
backs into the queue at positions which are a function of the service they have
received. The model is analyzed, yielding a response function. Some examples
are presented to illustrate the flexibility of the model. The processor-sharing
limit for a subclass of queueing disciplines is examined, and considerations
relating to swapping are discussed. A synthesis procedure for the discrete model
is described in [9]. This procedure determines a set of parameters for the model
so that the resulting scheduling algorithm achieves a specified average response
function.

2. The model. The model to be considered involves a single queue. The job
at the head of the queue receives one quantum of service. If it does not terminate,
it is returned to the queue at a position which depends on its attained service.
We make the following assumptions in order to facilitate the analysis..

Assumption 1. Time is quantized into Q second intervals.
Assumption 2. The quantum size to be used by the server is equal to Q seconds,

the discrete time interval.
Assumption 3. At most, one newjob can arrive at the end ofa Q second interval

with probability 20Q. This is the discrete time counterpart of the Poisson process.
Assumption 4. Each job requires exactly nQ seconds of service, where n is an

integer. The service time is a random variable which is independent of the arrival
process and is a sample from a geometric distribution. Thus the probability that
a new arrival requires n quanta is (1)"- 1, where a is the feedback probability
or the probability that a job that has just received a quantum of service does not
terminate.

Assumption 5. There will be no hold back, i.e., the server will not be idle as
long as there is work to be done.

Assumption 6. The system is in the steady state.

ANALYSIS OF A FEEDBACK SCHEDULER 161

Assumption 7. All overhead is negligible.
From Assumption 4, the average service time is given by

(2) = Q/(1).

Since the average arrival rate is 20 jobs per second, it follows that the
utilization factor is

(3) p 2oQ/(1 r).

Only systems with p < will be considered.
The model makes use of a single queue whose positions are numbered as

shown in Fig. 2. The head of the queue will be referred to as position and will
always contain the job currently being served, if any.

FIG. 2. Labeling the positions in the queue

DEFINITION. Jobs which have received exactly iQ seconds of service and
have not finished are said to be in group until they have completed the next
quantum. A job that has just received iQ seconds of service and does not depart
is said to be joining group i.

To specify the scheduling algorithm, we associate with group a position
in the queue denoted by rti. A job joining group will not be placed farther than
rci positions from the server. At the end of a Q second interval, the following
insertions may occur"

1. A feedback and an arrival.
2. A feedback alone.
3. An arrival alone.

The feedback will of course be joining a specific group i, _> 1, while the arrival
will be joining group 0. Consider the case where there is a feedback as well as
an arrival at the e.nd of a Q second interval. If rci < to, then we shall insert the
two jobs in the following way. As soon as the job to be fed back leaves position 1,
all the jobs occupying positions k, where k =< rc, will be moved one position
closer to the server. The job that is joining group will then be placed in position
H(i), where

H(i) min {rci, n’ + }, i>=l,

and n’ is the total number of jobs currently in the queue (not including the feed-
back and the arrival). Following the insertion of the feedback, the arrival will
then be placed in position H(0), where

H(0) min {re0, n’ + 2}.

It is possible to include in the quantum size, Q, a fixed amount of overhead, known as a set

up time [10], without disturbing the analysis.

162 Y. S. CHUA AND A. J. BERNSTEIN

In the process, jobs that are in position k, where k >__ no, will be moved one
position backward to make room for the arrival. If ni > no, then the order of
insertion will be reversed"

H(0) min {no, n’ + }
and

H(i) min {ni,n’ + 2}, i>__ 1,

where n’ is now interpreted as the number of jobs in the queue as seen by the
first job to be inserted. In order to avoid ambiguity, we exclude algorithms in
which no n for some > 0.

Consider the case where there is only one job to be inserted at the end of a
Q second interval. Such a job may be an arrival or a feedback. Assuming that
this job is joining group i, then all the jobs occupying positions k =< n will be
moved one position forward followed by the insertion of the tagged job in
position H(i), where

H(i) min {n, n’ + 1}, >= 0.

In any case, a job that finishes at the end of a Q second interval will be ejected
from the system immediately and will not be included in the determination of n’.
Note that the algorithm follows neither the early arrival nor the late arrival rules
as defined by Kleinrock [6], but rather a mixture of the two. For a job that is
joining group i, where n < no, the late arrival rule applies (i.e., the feedback is
inserted before the new arrival); for jobs joining group i, where n > no, the
early arrival rule applies (i.e., the new arrival is inserted before the feedback).
Note also that due to the fact that jobs may be inserted in the queue, some jobs
may move forward one position; some may remain in their original positions for
another Q second interval, while others may move one position backward. A
scheduling algorithm is completely specified by the sequence {no, n l, n:, ...},
where ni is an integer indicating a position in the queue. Although, since p < 1,
the queue is not expected to reach an infinite size, we allow ov as an acceptable
value for n, indicating an insertion point at the end of the queue. For the purpose
of precisely specifying some scheduling algorithms, we introduce the notation- to differentiate between two possible insertion points at the end of the queue.
Thus if n and nj or-, then n > nj. The usage of and oo- will be
illustrated in the following examples.

Example 1. First-come-first-served scheduling (FCFS) can be specified by
setting no ov and n- 1, >= 1. This simply means that all new arrivals join
the end of the queue, while subsequent feedbacks will go to position 1.

Example 2. The late-arrival round robin scheduling system is specified by
setting no ov and n -, _>_ 1. Arrivals as well as feedbacks are required
to join the end of the queue. However, since n < no, _>_ 1, a feedback (if any) is
allowed to join the end of the queue before an arrival.

The early-arrival round robin scheduling system is obtained by setting
no oo-and ni o, >= 1.

Example 3. The algorithm obtained by setting no and n k (where k
is finite), i__> 1, is intermediate between the FCFS and the round robin (RR)

ANALYSIS OF A FEEDBACK SCHEDULER 163

schedulers. We shall refer to this as the partial round robin (PRR) scheduler. Up
to a maximum of k jobs are allowed to receive service in a round robin fashion;
other jobs wait on a FCFS basis until one of the k jobs terminates, at which time
the job at the head of the waiting line (i.e., position k + 1) will join the k
jobs already in service.

Example 4. It is possible to vary the quantum size to some integral multiple
of Q by specifying some successive values of n to be 1. For instance, we may have
a simple RR scheduler which has a varying quantum size depending on the
number of passes a job has made through the queue. During the first pass, the
server gives the job one quantum of service; during the nth pass, n quanta. The
sequence n is given by

hi= -, i= 1,3,6,10,15,...,

1, i=2,4,5,7,8,9,11,12,13,14,....

Example 5. As it is the purpose of time-sharing systems to provide faster
service for short jobs at the expense of longer ones, a reasonable scheduling
algorithm is specified by assigning to ni a monotonically increasing integer
function of i, e.g.,

n a + bi + ci2,

where a, b and c are positive integers.

3. Analysis. In order to analyze the model, it is necessary to study the be-
havior ofjobs in the system, i.e., the variation of the number ofjobs in the system
and the movement of jobs in the queue. Since service time is geometrically dis-
tributed, the variation of the number of jobs in the system does not depend on
the scheduling algorithm (due to the memoryless property of the geometric
distribution). However, depending on when the system is observed, we have
different probabilities of finding n jobs in the system. If the system is observed in
the middle of every Q second interval, the probability of finding n jobs in the
system is [6]

l-p, n=0,

(4) P’(n)= pczn n > O

where e pa/(1 2oQ). The expected number of jobs in the system is given by

(5) E’(n) p(1 2oQ)/(1 p).

Let F be the set whose elements are the integers such that n < no. Let 2g denote
the average rate at which jobs join group i, >= 0. 20, the rate at which jobs join
group 0, is known. Out of the 2o jobs that arrive every second, only those re-
quiring more than iQ seconds of service will ultimately join group i. Thus, the
average rate at which jobs enter group is given by

"i ’0 E (1 a)a"-
n=i+

164 Y. S. CHUA AND A. J. BERNSTEIN

or

(6) 2i 2oai.
The probability of a feedback into group i, given that the system is busy, is 2iQ/p.
It can be verified that

(7) Z 2Qai
a

i=1 P

We will denote the probability of a feedback into group i, where e F, by f. It
follows that

(8) f--)oQai.
iF

DEFINITION. Pa(n) Prob (at the time a new arrival is inserted in the queue
there are n jobs in the system).

DEFINITION. Pfi(n)= Prob (at the time a feedback into group is inserted
in the queue there are n jobs in the system).

There will be n jobs in the system as seen by an arrival if during the Q second
interval just before the arrival there were n jobs in the system and the job receiving
service (if any) is fed back to group i, i6 F, at the end of the Q second interval.
The arrival will also see n jobs in the system if there were n + jobs during the
previous Q second interval and the job in service terminates or is fed back to
group i, F, at the end of the quantum. Thus

P’(0) + (1 f)P’(1), n 0,
(9) P,,(n)

fP’(n)+ (1 -f)P’(n + 1), n > 0.

In order to determine Pyi(n), we make a simplifying assumption that the
queue length at each pass is independent of the queue lengths of previous passes.2

The probability of a feedback seeing n jobs in the system will depend on i, the
number of the group that the job is joining. If i F, then an arrival does not
affect the number of jobs seen by the feedback. On the other hand, if i F, then
the arrival must be taken into account in determining Pyi(n).

(10)

P’(n + 1)/p, iF, n >=0,

Pfi(n) (1 2oO)P’(1)/p, iCF, n O,

(1 2oQ)P’(n + 1)/p + 2oQP’(n)/p, 4i F, n > O.

This approximation is made so that the analysis of the model remains manageable. Another
approach would be to adapt the analysis used by Kleinrock [5]. Here the average value of the queue
size on the ith pass is determined as a function of its value on the previous pass. This approach, how-
ever, does not take into account the probability distribution of the queue size on each pass (cf. (9),
(10)) which is important for the model under consideration in this report since jobs are not neces-
sarily fed back to the end ofthe queue, A more exact model would take into account both the dependence
of queue sizes in successive passes and the distribution function for the queue size at each pass. Analysis
of such a model would be extremely complicated, however.

ANALYSIS OF A FEEDBACK SCHEDULER 165

(11)

DEFINITION. Pa(i,j) Prob (a job entering group is inserted into position j
under Algorithm A). 3 Using (9) and (10), we find that

Pa(J- 1), i= 0, j < no,

Pa(m), i=0, j= no,
m=no-

PA(i,j) Py,(j- 1), i> 0, j < hi,

Pyi(m), i> O, j- hi,
m-ni-

O, i>=O, j> hi.

DEFINITION. t average time required for a job placed in position j to reach
the server.

DEFINITION. Wi average time required for a job joining group to receive
the next quantum of service.

Given t and Pa(i,j), wi and the response function under Algorithm A,
Ta(nQ), can be calculated using the relations

(12) w tPa(i,j) + Q,
j=l

n-1

13) Ta(nQ) w,.
i=0

To solve for t, we consider the random walk shown in Fig. 3. State j in
Fig. 3 denotes position j in the queue. The transition period is Q seconds and the
transition probabilities are defined as follows"

a Prob (a job currently at position j will advance to position j at the
end of the current Q second interval);

r Prob (a job currently at position j will remain in position j at the end
of the current Q second interval);

b Prob (a job currently at position j will back up to position j + at
the end of the current Q second interval).

r r3 re
aj

aj

bj bj_l b3 b2

FIG. 3. Random walk modelfor the movement ofjobs in the queue

Given a queueing discipline in the form of a sequence n, we can calculate the
transition probabilities a, rj and hi. Let n and n’ be sets satisfying

rd {ilni < j, # 0} rd’ {iln =< j, :/: 0}.

Algorithm A is an arbitrary scheduling algorithm specified by a sequence {no, nl, n2 }.

166 Y. S. CHUA AND A. J. BERNSTEIN

Thus n contains the indices of feedback points other than no, which are less
than j (i.e., in front of position j) and rd’ is the union of rd and the set of indices
of feedback points that have value equal to j. Note that n and rd’ may be empty.
The transition probabilities are given by

1-gj, no >-j> 1,
(14) aj--

(1 2oQ)(1 gj), j > no;

(15)

gj,

rj-- (1 -2oO)gj,

(1 oQ)gj + oQ(1

ZOo >j> 1,

j= Zto,

j> no;

(16) bj= 1-aj-rj, j> 1,

where

2Qa-----i, hj
2Qai

inJ P in.’ P

The mean time to absorption starting at state j in Fig. 3 is exactly the average
time required for a job placed in position j to reach the server. The following
system of equations [9] describes the situation"

0, j=l,
(17) tj

Q -b rjtj -t- bjtj+ -t- ajtj_ , j > 1.

Equation (17) is an infinite set of equations which has no general solution since
we have only one boundary condition, 0. Wc shall impose restrictions on
the sequence r so as to obtain special subclasses of queueing disciplines character-
ized by solvable sets of equations for tj.

4. Queueing disciplines with n0 ---- c.DEFINITION. A unidirectional random walk (URW) is an absorbing random
walk on the integers 1, 2, 3,... which satisfies the following conditions"

1. State 1 is absorbing.
2. aj > O and bj O,j > 1.
Consider the subclass of qucueing disciplines in which all new arrivals are

required to join the end of the queue, i.e., rCo oe. In this case, it is impossible
for a job to move backwards (i.e., bj 0). Furthermore, aj > 0 for all j since the
probability of having a feedback in front of j is less than unity. This subclass of
queueing disciplines can therefore be modeled by a URW. Thus, the system of
equations (17) reduces to the following"

0, j-l,
(18) tj

Q + rjtj + ajtj_, j > 1.

Solving for tj using rj + aj 1, we obtain

(19) tj=Q j>
m=2 am

ANALYSIS OF A FEEDBACK SCHEDULER 167

Scheduling algorithms that can be modeled by a URW include the round
robin, FCFS and the partial round robin schedulers. Analysis of each of these
will be presented.

4.1. Round robin. Consider the late-arrival RR algorithm (RRLA). Since
arrivals as well as feedbacks are required to join the end of the queue, it follows
that aj 1,j > 1. Thus

(20) tj (j- 1)Q, j > 1.

Because of the late-arrival assumption, it follows from (4), (9), (10) and (11) that

(21) PRRLA(i,j) (1)J-1, >= O, j >= 1.

Substituting (20) and (21) into (12), we obtain

Qpa
+Q, i>=O.(22) wi-

p

The response function is given by

TRRLA(nQ) nQ (i p(23) _p+l n>=0.

Consider now the early arrival system (RREA) tj is still given by (20). How-
ever,

(24) PRREA(j)

Consequently,

(p)(+
2oQ

,p,
O"

l-p,

O"

i=0, j=l,

i=0, j>l,

i>0, j= 1,

i>0, j> 1.

QP2a
i= O,-p+Q’

(25) wi=
Qp(1-2oQ)+ Q, i> o.
1-p

The response function is

Qp(pa + (n- 1)(1 2oQ))
(26) TRREA(nQ) + nQ, n > O.

1-p

4.2. First-come-first-served. A job at position j in the FCFS system will
move to position j 1 at the end of the current Q second interval with probability

a (i.e., the probability that the job being served terminates after receiving
the quantum). Therefore

aj= 1-a, j> 1; rj=a, j> 1.

168 Y. S. CHUA AND A. J. BERNSTEIN

Using (19), we obtain

(27)

From (4), (9), (10) and (11), it follows that

(1)0j-

(28) PFCFS(i,J) 1,

O,
Therefore

Q(j 1)/(1 a), j>l.

i=0,

i>0,

i>0,

j>=l,

j=l,

j>l.

(33) wi

j>l

l<j<k

i>0, j=k,

i> O, j>k.

i>0.

(32)

1 s-- 0

(1 -)S- i> 0

PPRR j)

O,
Substituting (31) and (32) into (12), we obtain

(j 1)Q(1 x)aJ-’
j=l

j=k+ O"

k

(j 1)Q(1)J-
j=l

re=k-

Also,

Qpa
+ Q, i= 0

(29) wi= (1-a)(1-p)

Q, i>0.

The response function is given by

Qpa
(30) Tvcvs(nQ)

(1 a)(1 p)
+ nQ.

4.3. Partial round rolfin. In the PRR system, a job that is in any of the first
k positions moves forward one position at the end of a quantum with probability
1, and one that is in position j, j > k, will move forward one position at the end
of a quantum with probability a. Thus

aj rj
-a, j>k; a, j>k.

Solving for s, we get
(j- 1)Q, <=j<_k,

(31) tj (j k)Q
/ (k 1)Q, j > k.

1-a

ANALYSIS OF A FEEDBACK SCHEDULER 169

Solving for the response function, and simplifying, we get

tr)(1Qk) (11 k0(34) TpRR(nQ)=
(1--

+nQ ---_ n> O.

It can be verified that as k approaches infinity, TpRR(nQ) approaches
TRRLA(rIQ). For values of k between 1 and , we have a family of scheduling
algorithms having the combined characteristics of the FCFS and the RR systems.
An attractive feature of the PRR algorithm is its ability to control the amount of
swapping in a time-shared system. If the RR algorithm is employed in a system
in which the number of jobs exceeds the capacity of the core, then a swap must
occur after each quantum. Overheads can be reduced by employing a PRR system
with k equal to the number of jobs that can reside in core simultaneously. In this
case, once a job is broughtinto core, it will not be swapped out until it terminates.

4.4. Comparison. Comparing the FCFS and the RR systems, Kleinrock [6]
observed that jobs requiring less than the average amount of service get faster
response in the RR system, while those requiring more than the average amount
of service get faster service in the FCFS system. The crossover point is Q/(1
the average service time. By substituting 1/(1 tr) for n in (34), it can be shown
that a job requiring the average service time will experience the same amount of
waiting time regardless of the value of k. Jobs requiring less than the average
service time get better response as k increases. We may regard k as a measure of
the degree to which shorter jobs are favored at the expense of longer jobs. Typical
plots of response functions for the FCFS, RRLA, RREA and PRR systems are
shown in Fig. 4. The plots are actually discrete functions but are shown as con-
tinuous for illustrative purposes.

RESPONSE

Q Q
SERVICE

FIG. 4. Response functions of the RREA, RRLA, PRR and FCFS

170 Y. S. CHUA AND A. J. BERNSTEIN

5. Queueing disciplines with a finite number of feedback positions and

o < . In this section, queueing disciplines with a finite number of distinct
feedback positions will be considered. By a finite number of feedback positions
we mean that although the sequence is infinite, its elements are taken from a
finite set of positive integers. Under this constraint, it is possible to relax the
restriction no . Let b {q51, b2, b3, "", (])N}’ where (i is chosen from the
set of positive integers including o and o-. Furthermore, let the sequence q5
satisfy 0<bl <4)2 < <bN-1 <qN=< . Let qS’ be the largest finite
element of b. A queueing discipline with N distinct feedback positions can be
specified by a finite sequence 4) and an infinite sequence n, the indices of which
may be decomposed into N mutually exclusive subsets Sk, k 1, 2, ..., N, where
Sk illr’i k

Figure 5 shows the random walk model for the subclass of algorithms that
we are considering. In general, the transition probabilities for states j, where
j =< b’, are different. Since b’ is the maximum finite feedback position, the transition
probabilities for the states j, where j > q’, are identical.

ro, K r, r,, r3

b,,+ b, b, b3 b

FIG. 5. Random walk model for the movement ofjobs in a queueing discipline with a finite number
of feedback positions

In order to solve for tj, we split the random walk in Fig. 5 into two parts.
A finite random walk is shown in Fig. 6. It contains states through b’ of the
original chain plus a new reflecting state D. Note that D is entered from state b’
with probability b, and thus the transition probabilities of all states j, where
j =< b’, of the original chain are preserved. State D represents the infinite portion
of the original chain which has been omitted and the number of times it is entered
will be equal to the number of times the omitted portion would have been entered
in the original chain. We shall refer to the chail shown in Fig. 6 as the F-chain.

r,, r3

b,, b b2

FIG. 6. The F-chain

An infinite chain is shown in Fig. 7 which contains states qS’ + 1, ’ + 2,...
of the original chain plus a new absorbing state D’. The average time to absorption,
starting in state 4)’ + 1, will be equal to the average time to go from state q’ +
to state 4)’ in the original chain. We shall refer to the chain in Fig. 7 as the 1-chain.

The/-chain is a random walk on the integers b’ + i, _> 1, satisfying aj a,

rj r and bj b for j > 4/. Note that since p < 1, a job inserted in the queue

ANALYSIS OF A FEEDBACK SCHEDULER 171

Fia. 7. The 1-chain

must ultimately reach the server, implying that a > b. Under this constraint, it
follows from [9] that the mean time to absorption, starting in state ’ + k, is

(35) m4,+ kQ/(a- b).

Using finite Markov chain theory [5] it is possible to analyze the F-chain
and, in particular, to calculate the average number of times state D is visited before
absorption, given an arbitrary starting state. From (35) it follows that starting in
state ’ + of the I-chain, it will take an average time of Q/(a- b) seconds
before absorption in state D’ (i.e., before reaching state ’ of the F-chain). This
gives the average amount of time spent in state D for each visit.

Let P be the transition matrix for the F-chain, where P {pq} and p is the
probability of being in state j after the next transition given that the current state
is i. It follows that

(36) P

0 0 0 0

r2 b2 0 0

0/;/3 /’3 b3
0 a4 r,

o/0 0 0 0

Let G be the qS’ x qS’ matrix obtained from (36) by deleting the first row and first
column, which correspond to the absorbing state, 1. Let M {mij} be the inverse
of (I G), where I is the ’ x 4’ identity matrix. It can be shown [5] that M
exists and is given by

(37) M G.
k=O

If we label the rows and columns of M using the integers 2, 3, 4, ..., tk’ and D,
mij gives the average number of transitions into state j before absorption given
that the starting state is i. Summing up the elements of row of M therefore gives
the average number of transitions before absorption, having started in state i.
Note that for all states except D, the time between transitions is Q seconds. The

172 Y. S. CHUA AND A. J. BERNSTEIN

average time spent in D on each visit is Q/(a b) seconds. Let v be a vector of b’
elements given by

Q

(38) v

Q

Q/(a b)/

Then, denoting the jth row of M as a row vector Mj, it follows that

Mj.v, 2 =<j =<
(39) tj= Q(j_ 49’)+ to’, j> dp’.

a-b

The response function can therefore be obtained using (11), (12), (13) and (39).
To illustrate the flexibility of the model, we have sketched in Fig. 8 the

response function for a queueing discipline which is specified as follows"

5, i=0,

10, i= 1,2,3,...,10,

20, 11,12, 13,..., 20,

, 21,22, 23,

Note that there are four straight-line segments which correspond to the four
feedback positions.

RESPONSE

T(21Q)

T(llQ)

T(Q)
/ SERVICE

llQ 21Q
FXG. 8. Response function ofa scheduling algorithm with four distinctfeedback positions

ANALYSIS OF A FEEDBACK SCHEDULER 173

6. Processor sharing. It is interesting to investigate the subclass of PRR
algorithms as the quantum size goes to zero [7]. In the limit, the arrival process
becomes Poisson and the service time exponential. Let/to be the average arrival
rate and 1/ the average service time. The following probabilities hold [4] for
P o/# < 1:

(40)

(41)

P(n) Prob (n jobs in the system)

(1

P(n) Prob (n jobs in the system given that the system is busy)

(1 p)p"-’.

Consider a PRR system with parameter k. Up to a maximum of k jobs may
be sharing the processor equally. A new arrival that finds fewer than k jobs in
the system will immediately start service at the rate of second of service for
each n seconds, where n is the total number of jobs in the system including the
arrival. If, upon arrival, the new job finds k or more jobs in the system, it joins
the end of the queue and moves forward at the rate of # positions per second,
which is the rate at which jobs terminate. Thus, if n _>_ k, the average waiting time
is (n k + 1)/# seconds. The average waiting time is therefore

(42) W= (1/#)(n- k + 1)(1 p)pn.

Let Z denote the average amount of time to receive one second of service once
a job has started to receive service. Then

(43) Z= n(1 -p)p"-I + k (1-- p)pm-1.

The response function is given by

(44) TeRR(t) W + Zt.

Substituting the expressions for W and Z into (44) and simplifying, we obtain

p (1-p)t(45) T..(t) /(1 p)
+

p

Examining T(t) at extreme values of k, we find that

(46) lim Tenn(t)= t/(1 p),

and, for k 1,

(47) TeRR(t) P + t.
u(p)

Equations (46) and (47), as expected, are the response functions of the processor
sharing RR system [4] and the FCFS system [7], respectively. Figure 9 shows the
response functions for some members of the PRR family.

174 Y. S. CHUA AND A. J. BERNSTEIN

RESPONSE

(1 p)

p

SERVICE

FIG. 9. Response functions of the processor-shared RR, PRR and FCFS systems

7. Swapping. A major source of overhead in time-shared computer systems
arises when the size of core is not sufficient to accommodate all the jobs awaiting
service. In this case, some jobs are held on a secondary storage device and are
periodically exchanged (swapped) with jobs that are in core so that they can
receive service in accordance with the scheduling algorithm. Since the model
under consideration is an infinite source model, swapping will clearly be neces-
sary. In this section we will obtain a measure of the rate at which swapping occurs
as the result of implementing an algorithm specified by a particular sequence .

We assume that a job which terminates must be swapped out of core. A job
that arrives will be swapped in immediately if position H(0) is in core. Otherwise,
the arrival will be placed in the portion of the queue which is held on a secondary
storage device and will be swapped in at a later time. Clearly, if the core size is
infinite, the only swapping that goes on involves arrivals and departures. How-
ever, we shall consider a more realistic system that has a finite amount of core so
that movement of jobs from the secondary storage device to core and vice versa
must be taken into account in determining the swap rate. Since every job that is
swapped in must ultimately be swapped out, the average swap in rate is equal
to the average swap out rate. It is therefore sufficient to determine the swap in
rate and double it in order to arrive at the average swap rate. Let J be the average
number of jobs that can reside in core simultaneously. In the following analysis
we shall assume that the first J positions in the queue are in core and the rest of
the queue is on a secondary storage device.

Consider an algorithm in which Zo > J. In this case, an arrival is swapped
in immediately only when it sees a queue length that is less than J. The following

ANALYSIS OF A FEEDBACK SCHEDULER 175

are mutually exclusive events which may happen at the end of a Q second interval
and which involve swap ins"

1. There is an arrival and the queue size as seen by the arrival is less than J.
2. The queue size is greater than J during the middle of the Q second interval

and the job receiving service is not fed back into a position in core, i.e., it
either departs or is fed back into a position out of core.

Event results in the swapping in of the arrival and event 2 causes the job at
position J + to be swapped in. There is no other event which will result in a
swap in. Denoting the average swap rate by 2s, it follows that 2sQ is the average
number of swaps that must be performed for each Q second interval. For a
scheduling algorithm in which Zro > J, we have

(48) 2sQ =2 2oQ P,,(n)+ (1-hs) P’(n
n=O

where

2oQa
h

izd’ D

Consider now the case in which ro -<_ J. An arrival will be swapped in im-
mediately regardless of the queue length. Therefore, the events which involve
swap ins are:

3. There is an arrival.
4. There is no arrival; the queue size is greater than J in the middle of the

Q second interval; and the job being served is not fed back into a position
in core.

Events 3 and 4 are mutually exclusive and cover all possible events that result in
swap ins. Thus, for a scheduling algorithm in which 7r0 _-< J, we have

(49) 2sQ 2 2oQ + (1 2oQ)(1 -ha) P’(n)

where hj is as indicated for (48).
Equation (48) simplifies to the following"

(50) 2Q 212oQ(1 fpj-1 (1 f)pod) + (1 hj)pofl],

where f is given by (8). Equation (49) can also be simplified and is given by

(51) 2Q 212oQ + (1 20Q)(1 -hs)pod].

8. Conclusion. A flexible feedback queueing model has been developed and
analyzed. Its wide range of performance is an attractive feature which can be
very useful in the design of computer systems. The analysis was made possible
using Markovian assumptions. Further work is required in analyzing the model

using more realistic assumptions. A more general extension of the model which

takes into consideration externally assigned priorities should prove to be an

interesting and challenging problem.

176 Y.S. CHUA AND A. J. BERNSTEIN

REFERENCES

[1] A. J. BERNSTEIN AND J. C. SHARP, A policy driven scheduler for a time sharing system, Comm.
ACM, 14 (1971), pp. 74-78.

[2] E. G. COFFMAN AND L. KLEINROCK, Feedback queueing modelsfor time-shared systems, J. Assoc.
Comput. Mach., 15 (1968), pp. 549-576.

[3] J. Hsu, Analysis of a continuum of processor-sharing models for time-shared computer systems,
Ph.D. dissertation, Computer Science Dept., Univ. of Calif. at Los Angeles, 1971.

[4] J, KEMENY AND J. SNELL, Finite Markov Chains, Van Nostrand, Princeton, N.J., 1960.

[5] L. KLEINROCK, Analysis of a time-shared processor, Naval Res. Logist. Quart., (1964),
pp. 59-73.

[6] , Time-shared systems." A theoretical treatment, J. Assoc. Comput. Mach., 14 (1967),
pp. 242-26 l,

[7] J. M. McKINNE, A survey of analytical time-sharing models, Comput. Surveys, (1969), pp.
105-116.

[8] E. PARZEN, Stochastic Processes, Holden-Day, San Francisco, 1962.
[9] Y. S. CHUA, Analysis and synthesis offeedback queueing models for time sharing systems, Ph.D.

dissertation, State University of New York at Stony Brook, 1973.
[10] I. ADIRI, Computer time-sharing queues with priorities, J. Assoc. Comput. Mach., 16 (1969),

pp. 631-645.

SlAM J. COMPUT.
Vol. 3, No. 3, September 1974

ISOMORPH REJECTION ON POWER SETS*

DAVID M. PERLMAN-

Abstract. If X is a finite set and G a finite group acting on X, then an action of G on P(X), the
set of all subsets of X, is induced in a natural way. An efficient generating algorithm is described
which; when incorporated into a backtrack procedure, produces a system of distinct representatives
for the action of G on P(X).

Key words, isomorph rejection, pattern generating, backtrack generators, minimal s.d.r.

Introduction. Let X be a finite set and G a group of permutations of X. The
group G defines an equivalence relation on X by

x y if there exists a g s G such that gx y.

A system of distinct representatives (s.d.r.) for the equivalence classes or orbits is
a subset A

_
X consisting of exactly one member of each orbit.

If D, R are finite sets and G acts on D, then G acts also on the set of functions
R as follows:

iff R, then let (gf)(d) f(gd) for all d D,

and P61ya’s theorem 1] provides a means for computing the size of an s.d.r. A
for G acting on R.

Side conditions imposed on this s.d.r, considerably complicate the com-
putation. Let B0 be any subset of R and define

B {gflf6Bo,g G}.
Clearly B is a union of G-orbits in R’, and if A is any s.d.r, for G acting on R",
then we may let

Ao {f A[fq B},
and it is clear that the size of Ao is well-defined. S. G. Williamson [2] has provided
a means for determining the size-of Ao however, the computation involves the
generation of an s.d.r, for the action of the group G on the power set of a certain
set.

Another application for an algorithm that generates an s.d.r, for the action
of a group on a power set is in the generation of A itself in the P61ya case, or
in the setting of Williamson. For example, if R has only two elements, then there
is an obvious correspondence between R and P(D). If R {a,b}, then for
Y D, we associate f R, where f-a(a) Y. If R {a l, a2, am}, then the
following recursive procedure can be used to generate A:

(i) generate all functions up to the action of G which assume one of the two
values a or (not a);

Received by the editors April 23, 1973.

" Computer Center, University of California at San Diego, La Jolla, California 92037. This
research was supported in part by the Air Force Office of Scientific Research, Air Force Systems
Command, USAF, under AFOSR Contract/Grant 71-2089.

177

178 DAVID M. PERLMAN

(ii) for each function f generated in step (i), let D’= D\f-l(al), let
G’= GS-,a,), the stabilizer subgroup of f-l(al), and let R’= {a2,a3,.., a,,}. Apply the algorithm to G’ acting on 11’’.

If side conditions are to be imposed on A, then they may generally be applied
at each stage of the recursive procedure described above, giving rise to a back-
track scheme. Backtracking is an efficient way of searching a tree for all terminal
nodes satisfying prescribed conditions. Detailed discussions may be found in [3],
[4] and [5]. Fundamentally, a backtrack algorithm consists of a generator which
moves in an orderly fashion through the tree and a test phase which ultimately
eliminates nodes produced by the generator which do not lie on the path to any
desired terminal node. An example is presented in {} 2. Section provides the
fundamental algorithm, and 3 gives some experimental results.

1. A theorem.
THEOREM. Let X be a finite set with an arbitrary ordering defined and G a

group acting on X. For each positive integer k <= [X[, order the k-subsets of X
lexicographically, and let An- contain the minimal s.d.r, for the action on G on
the (n- 1)-subsets of X. Then the following procedure produces a set A which
contains the minimal s.d.r, for the action of G on the n-subsets ofX :for each element
U An_,

(i) compute Gv, the stabilizer subgroup of U;
(ii) let Xv be the minimal s.d.r, for the action of Gv on X\ U;
(iii) if U (ux < u2 < < un-), then for each e Xv with un-x < t, in-

clude (u bl2 bin- t) in An.
Proof. We first show that the procedure generates an s.d.r, for the n-subsets.

Let T (sls2... sn) be any n-subset of X, and denote T\{s} by T. We must
show that an n-set equivalent to T is generated.

Let U min { V An- [V T for somej} ;the minimum is taken with respect
to the lexicographic ordering. Let U (uxu2 un-). By definition of An-,
there exists an integer k and a in G such that a U ---, T therefore a- Sk X\ U.
By definition of Xt there exists a Xu and a # Gv such that/t a-Sk. We
then have

rrl(UaU2 un_t) o’(ulu2 Un-lEr-lSk) T.

We must now show that un_ < t. Suppose un_ > (un-1 can never
happen). Then there exists a smallest index j, 0 =< j < n 1, such that < Uj+l,
and we have

W (u u2 ujtuj + Un- 2) < (U U2 Un- 1)"

Let V (UlV2 /An_l) be the smallest member of An- equivalent to W, so
V =< W < U, since A,_ contains the minimal s.d.r.

But ala’W--, T, where a#(un-2)= st. Since V W, we have V T/, and
this violates the minimality of U.

We now show that the set An so generated in fact contains the smallest
member of each orbit. To do this, we shall prove that for some constructed as
in the discussion above, (U b/2 bl it) <-_ (sl S2 Sn).

ISOMORPH REJECTION ON POWER SETS 179

Let V min W A,_ 1l W T,}. Since A,_ contains the minimal s.d.r, for
the (n 1)-subsets,

V (vv2... v,_) <= (SlS...s,_),

and by its construction, U =< V, so we have U =< V =< T,. If U < T,, then clearly
(UlU2 u,_ t) < (ss2 s,). If, on the other hand, U T,, then in the original
construction of the set equivalent to Twe may take k n and a to be the identity.
We then have a# # e Gv and _< s,, since and s, are in the same orbit of Gv
and Xv is the minimal s.d.r, for Gv acting on X\ U. Thus

(UlU2 bin- lt) <= (sxs2 s._ lSn)" Q.E.D.

For any computational environment, the algorithm requires two sub-
procedures:

(i) given a subset Y c_ X, compute the stabilizer subgroup Gr;
(ii) given a subset Y X and a subgroup H c_ G which acts on Y, compute

the minimal s.d.r, for H acting on Y.
Given a set x and a group G acting on X, the generation of an s.d.r, for the

action of G on P(X) begins with the application of subprocedure (ii) to obtain a
minimal s.d.r, for the 1-subsets. At stage n, note that the theorem does not neces-
sarily produce exactly the minimal s.d.r., but a slightly larger set. For this reason,
the theorem may be regarded as a generator, for a backtrack scheme to produce
the minimal s.d.r, for G acting on P(X). The test phase of the algorithm simply
determines whether a subset generated is lexicographically minimal in its own
orbit and discards it if it is not. Because the generator eventually produces all
minimal representatives, there is no need to check for equivalence with previously
accepted subsets--a far more costly test.

Side conditions to be imposed can, of course, be incorporated into the test
phase as well.

As a by-product of the generator, the size of the orbit of each subset U
generated can be computed immediately after step (i). It is just IOvl IG[/IGvl.

A computer program that implements the search just described can be
found in [6].

2. Examples.
Example 1. Consider the cube shown in Fig. 1. We wish to generate all con-

figurations of 0, 1, 2, 3 and 4 marks placed at the vertices up to the action of the
group of rotations of the cube. We shall also enumerate the patterns by means of
P61ya’s theorem [1], [5].

5 6

2

FIG.

180 DAVID M. PERLMAN

The 24 elements of the group together with the term of the cycle index poly-
nomial associated with each is as follows:

e identity x8
f (1234)(7658) x

X42fl
fz (13)(24)(68)(57) x
./’3 (2367)(1458) x4

f-I X

f4 (26) (37) (15) (48) X
fs (3456)(1872) x
f- x
f6 (35)(46)(17)(28) x24
sl (12)(56)(38)(47) x
82 (23)(58)(47)(16) x

(34) (78)(16)(25) X
s4 (14) (67) (38) (25) x
s5 (45)(27)(16)(38) x
86 (36) (18) (25) (47) x
vl (1)(6)(248)(357) xx
U71 X1X3

v2 (2) (5)(137)(468) X1X32
/)-1 22

X1X3
v (3)(8)(246)(156) xlx322
/)1 22

X1X

v4 (4)(7)(135)(268) x1x322
1)- 22

x1x3

The generation algorithm begins with the construction of the minimal
system of distinct representatives for the subsets of vertices of size one. Since the
group is transitive, it consists of a single set, and we have

U ---{{1}}.
The stabilizer subgroup of the set { } is {e, Vl, v-1 }, and the minimal s.d.r, for the
action of this subgroup is {1, 2, 3, 6}. The is discarded, and we have

U2 {{1,2},{1,3},{1,6}}.
The stabilizer subgroup of (1, 2} is {e, s }, and the associated s.d.r, is {1, 3, 4, 5},
from which we get the sets {1, 2, 3}, {1, 2, 4} and {1, 2, 5}. The set {1,2, 4} is
discarded since it is equivalent to { 1, 2, 3} by fl.

The stabilizer subgroup of {1, 3} is {e, f2}. The associated s.d.r, is {1, 2, 5, 6},
and the sets generated are {1, 3, 5} and. {1, 3, 6}. The set {1, 3, 6} is discarded since
it is equivalent to {1, 2, 6} by 82. Note that it is not necessary to find the lexico-
graphically least 3-set. The existence of any equivalent, lexicographically smaller
set is sufficient.

The stabilizer subgroup of {1,6} is {e, $2, $3, $5, 1,171}, and the s.d.r, is
{ 1, 2}, so nothing new is generated; hence we have

U3 {{1,2, 3}, {1,2,5}, {1,3,5}}.

ISOMORPH REJECTION ON POWER SETS 181

From the set 1, 2, 3} we get the subgroup e} and the s.d.r. 1, 2, 3, 4, 5, 6, 7, 8}.
The 4-sets generated are {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7} and {1, 2, 3, 8}.
All are lexicographically minimal in their respective orbits. The set {1, 2, 5} also
has a trivial stabilizer subgroup, and the sets produced are 1, 2, 5, 6}, 1, 2, 5, 7}
and {1,2,5,8}. The set {1,2,5,7} is equivalent to {1,2,4,6} by Sl, and {1,2,5,8}
is equivalent to 1, 2, 4, 7} by fs, so they are not included.

Finally, the stabilizer subgroup of {1, 3,5} is {e, v4, v21}, and the corre-
sponding s.d.r, is {1, 2, 4, 7}. Only the 7 is used giving 1, 3, 5, 7}. We have

U4= {{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,7},
{1,2, 3, 8}, {1,2, 5,6}, {1,3, 5,7}}.

To simply count these sets by means of P61ya’s theorem, let D be the vertices
of the cube and R the set {yes, no}. Define a weight function by no---, and
yes x, so that a function in R with k yes’s and 8 k no’s has weight x. The
cycle index polynomial is

P(x,,..., x8)= 4[x + 9x + 6x2 + 8x2x].
The pattern inventory, obtained by setting x + x’, is

[(1 + x)s + 9(1 + x2) + 6(1 + x)2 + 8(1 + X)2(I nt- X3)2].
Expanding this expression yields

+ x + 3x2 + 3x3 + 7x4 + ...,
so there are one null set, one 1-set, three 2-sets, three 3-sets and seven 4-sets.

Example 2. Let D8, the dihedral group of order 8, act on the hoop shown in
Fig. 2. We wish to generate all ways up to the group action of placing any of the
three symbols {,/, 7} on the vertices of the hoop such that no symbol appears
twice in succession.

4 2

FIG. 2

We first generate an s.d.r, for D8 acting on P({ 1, 2, 3, 4}) in order to find the
possible locations of the symbol 0. After the empty set 5, we have only one
1-set {1}. From this 1-set, we get two 2-sets {1, 2} and {1, 3}, but {1, 2} is discarded
because of the side condition, and the algorithm produces nothing larger con-
taining {1, 3}. Hence the only preimages of e are , {1} and {1, 3}.

Applying the theorem to the action of the stabilizer subgroup of {1, 3} on
the set {2, 4}, we obtain the three subsets , {2} and {2, 4}. These describe patterns
1, 2 and 3 shown in Fig. 3.

The action of the stabilizer subgroup of {1} acting on {2, 3, 4} provides the
empty set and two 1-sets, {2} and {3}. From {2} we get {2, 3}, which is discarded,

182 DAVID M. PERLMAN

and {2, 4}, which is retained. The subsets {3} and {2, 4} describe patterns 4 and
5 in Fig. 3, but and {2} are discarded because they represent patterns with
adjacent 7’s.

Finally, corresponding to those patterns With no ’s, we again obtain 25,
{1} and {1, 3}, but this time only {1, 3}, which describes pattern 6 of Fig. 3, is
kept since the others have adjacent 7’s.

2 3 4 5 6

FIG. 3

3. Timing and storage considerations. Estimates of computation time and
storage requirements for a pattern generation program based on the theorem
presented are difficult to develop, since a good estimate requires some infor-
mation about the symmetries involved. However, some experimental comparisons
have been run against a simpler procedure.

Let D be a set of size d and R a set of size r. Let the group G acting on D be
the dihedral group of order 2d. Two programs, run on the Burroughs B6700 at
University of California at San Diego, were written to generate all patterns for
G acting on R. The first of these was a recursive scheme based on generating
s.d.r.’s for a group action induced on a power set. The second algorithm was a
sieving procedure that worked as follows: a one-to-one mapping q is defined
from the elements of R to the integers {0, 1,..., re 1}. An array f of length
re is constructed, with every entry initially having the value 1. The procedure then
moves once through the array, and at each location f takes the following action:

iff is 1, then include q-1(0 in the list of patterns being generated, and then set
fq,g,-’(i) to 0 for each g e G. Iff/is 0, then do nothing.

Most of the time expended in the sieve method is in the computation of
qgg(p-1, and it is clear that this will happen IAI IGI times, where A is the s.d.r, for
G acting on R. A lower bound for IAI is rd/IGI, and we would expect a lower bound
for the computation time to be c(d)re, where c(d) is the time required to compute
qggq)- l(i).

Table compares the time in milliseconds used by the recursive and the
sieve algorithms for r fixed at 3,and d ranging between 2 and 8. Empirical formulas
derived from this data show that the time in milliseconds for the sieve method is
roughly 1.2 3TM, while the time for the recursive procedure is about
13.5 x 3TM.

Core storage necessary for the sieve method involves an array of length re

It can be shown that the recursive method uses less than 1/4(r 1)d(d + 1)2 memory
locations for saving intermediate s.d.r.’s.

ISOMORPH REJECTION ON POWER SETS 183

TABLE
Time in milliseconds for 3,]GI 2d

number of

patterns

6
10
21
39
92
198
498

sieve

10
24
72
190
633

1,812
5,806

recursive

63
123
269
497

1,173
2,401
5,942

REFERENCES

Ill G. PtLYA, Kombinatorische Anzahlbestimmungen jr Gruppen, Graphen und Chemische Ver-
bindungen, Acta Math., 68 (1937), pp. 145-254.

[2] S. G. WILLIAMSON, The combinatorial analysis ofpatterns and the principle of inclusion-exclusion,
Discrete Math., (1972), pp. 357-388.

[3] J. P. FILLMORE AND S. G. WILLIAMSON, On backtracking." A combinatorial description of the
algorithm, this Journal, 3 (1974), pp. 41-55.

[4] S. W. GOLOMB AND L. BAUMERT, Backtrack programming, J. Assoc. Comput. Mach., 12 (1965),
pp. 516-524.

[5] N. G. DEBRUIJN, P6lya’s theorem of counting, Applied Combinatorial Mathematics, E. F. Becken-
bach, ed., John Wiley, New York, 1964, pp. 144-184.

[6] D. M. PERLMAN, Computational methods for pattern enumeration and isomorph rejection, Ph.D.
thesis, Univ. of Calif. at San Diego, 1973.

SIAM J. COMPUT.
Vol. 3, No. 3, September 1974

A HIERARCHY THEOREM FOR
POLYNOMIAL-SPACE RECOGNITION*

OSCAR H. IBARRA"

Abstract. The effect of increasing the size of the worktape alphabet of Turing machines with a

read-only input and a single worktape operating within space L(n)= n is investigated. In particular,
it is shown that nondeterministic such machines with rn + worktape symbols are move powerful than
those with m symbols.

Key words. Turing machines, worktape alphabet, polynomial space

We consider nondeterministic and deterministic Turing machines with a
two-way read-only input tape with endmarkers and a single worktape. We denote
by 1-NTM (2-NTM) a nondeterministic Turing machine with a one-way (two-way)
infinite worktape. The deterministic varieties are denoted by 1-DTM and 2-DTM,
respectively. Let L(n) be a function from positive integers into positive integers
and j 1, 2. Aj-NTM (j-DTM) A is of type (L(n), m) if it has a worktape alphabet
of at most m symbols (the blank symbol, b, being one of the symbols) and has the
property that if an input x of length n (exclusive of the endmarkers) is accepted,
then A has a sequence of moves leading to the acceptance of x without scanning
more than L(n) tape squares on its worktape. We denote by j-NSPACE(L(n), m)
(j-DSPACE(L(n), m)) the class of sets accepted by j-NTM’s (j-DTM’s) of type
(L(n), m).

The purpose of this short note is to prove the following result, a corollary of
which resolves an open problem of Seiferas, Fischer and Meyer 5].

THEOREM. For any integers r >= and m >= we have
(i) 1-NSPACE(n, m) 1-NSPACE(n, m + 1),

(ii) !.-DSPACE(n’, m) G 1-DSPACE(n’, rn + 1),
(iii) 2-NSPACE(n’, rn) 2-NSPACE(n’, m + 1),
(iv) 2-DSPACE(n, m) G 2-DSPACE(n, m + 2).
The proof involves the following lemma.
LEMMA 1. Let m > >_ and r >_ 1. Then
(i) 1-NSPACE(n, m) _c I_NSPACE(n, I) implies I-NSPACE(n’, rn’)_

1-NSPACE(n, + 3)for all k >= 1,
(ii) 1-DSPACE(n, m)

1-DSPACE(n, 1) implies 1-DSPACE(n, rna’)_

1-DSPACE(n’, + 3)for all k > 1.
Proof of Lemma 1. We shall only prove (i). A similar proof applies "to (ii).

Let k >__ and L be in 1-NSPACE(n’, rn’). Define the set Q(L) {xd(-’)’i Ix I,
x in L}, where d is a new symbol not appearing in any string of L and Ix] length
ofx.

We first show that Q(L) is in 1-NSPACE(nr, m). So let A be a 1-NTM of type
(nr, mkr)accepting L. We shall construct a 1-NTM B of type (n, m) accepting Q(L).
For inputs of the form xd- 1)i, where i= Ixl < 2, B accepts by table look-up.

* Received by the editors October 12, 1973, and in revised form January 23, 1974.

f Department of Computer, Information, and Control Sciences, University of Minnesota, Min-
neapolis, Minnesota 55455. This work was supported by the National Science Foundation under Grant
GJ-35614. 184

POLYNOMIAL-SPACE RECOGNITION 185

For the cases where Ix >__ 3, B operates as follows"
1. B uses two symbols on its worktape to check that the input is of the form

xd(k-1)i for some x, where Ixl >__ 3. This is easily done by writing the
string # bi- 2 # on the worktape and using this string to check that there
are exactly (k 1)i d’s following x. B then rewrites the #’s by blanks (i.e.,
by b’s) and positions its worktape head on the square previously occupied
by the left #.

2. B simulates the actions of A on input x by encoding each of the mkr symbols
of A as a unique string of length k using m symbols.

It is clear that B operating as described accepts Q(L). We need only check that B
operates within n tape squares for an input of length n. Consider an input
xd- 1)i (i Ix]) of length ki. If A accepts x, then A has a sequence of moves leading
to the acceptance of x using no more than tape squares. It follows that B has a
sequence of moves leading to the acceptance of xd- TM using no more than Ui
tape squares (since each symbol of A is encoded as a string of length U). Thus B
is of type (nr, m) and Q(L) is in 1-NSPACE(n, m).

By assumption, 1-NSPACE(n, m) c_ I_NSPACE(n, l). ttence Q(L) is also
in 1-NSPACE(n, l). Let C be a 1-NTM of type (nr, l) accepting Q(L). We shall
construct a 1-NTM D of type (n, kr + 3) accepting L. For inputs of length <_ 2,
D accepts by table look-up. Now suppose x is an input of length >_ 3. Then D
operates as follows"

1. D generates the string #bit-2# on its worktape, where i= Ix I. D can
do this using no more than 4 symbols.

2. D then simulates on x the computation of C on input xd-) using only
the squares occupied by the string # bi- 2 #. D can carry out the simulation
within this space bound by treating each of its symbols as a U-tuple of
symbols from an alphabet of symbols. Note that D can use the length of x

to simulate the motion of the input head of C on symbol d. D does not
actually alter the #’s but remembers in its finite control the changes that
are made on the kr-tuples represented by the #’s.

Since D uses U-tuples in space , D has enough space to simulate C. Moreover,
D can do the simulation using only U symbols (exclusive of the symbol #).
It follows that D is of type (nr, U + 3) and L is in 1-NSPACE(nr, U / 3). (The
+3 takes into account the special symbol # and guarantees that kr / 3 => 4
for all l, k, r _>_ 1, a condition necessary in step 1.)

We remark that Lemma is yet another form of"translation" used in several
places in the literature (see, e.g., [1], [2], [3], [4]).

Remarks. For Turing machines with two-way infinite worktape, we make the
following observations concerning the applicability of the proof of Lemma 1.

(a) The construction of D from C must be modified if C has a two-way
infinite worktape, ttowever, since the workspace of D is bounded at both
ends by the special symbol #, the simulation of C can still be accomplished
within the desired space bound with only U + 3 symbols.

(b) Suppose the Turing machine A in the proof of Lemma has a two-way
infinite worktape. We consider two cases"

(i) For the nondeterministic case, the construction of B still works
provided that in step 1, B--after rewriting the #’s by blanks--non-

186 OSCAR H. IBARRA

deterministically positions its worktape head on any one of the squares
used in checking the input format, before simulating A. (Thus, B
guesses that the squares used in checking the input format are among
the squares that it may use in the simulation of A, allowing B to
operate within the desired space bound.)

(ii) For the deterministic case, there is no guarantee that the squares
used for checking the input format are among the squares B may use
in the simulation of A. Thus, B may not be able to operate within the
desired space bound. However, it should be clear that if B is provided
with a special symbol to bound the squares it is allowed to scan during
the simulation, B could be made to operate within the desired space
bound. Thus, B would have m + symbols instead of m.

By appropriately modifying the constructions in the proof of Lemma
along the lines mentioned in the remarks above, we get the following lemma.

LEMMA 2. Let m > >_ and r >_ 1. Then
(i) 2-NSPACE(n, m) c_ 2_NSPACE(n, l) implies 2-NSPACE(n, mk)

__c 2_NSPACE(n, k, + 3)for all k >= 1,
(ii) 2-DSPACE(n*, m + 1) _c 2_DSPACE(n,/) implies 2-DSPACE(n, mk)__

2-DSPACE(n, k + 3)for all k >= 1.
Before we can prove the theorem, we need the following result.
LEMMA 3. Let j 1, 2. Then for each m >= 1, we have
(i) j-NSPACE(n, m) (,J >_ j-NSPACE(n, l),

(ii) j-DSPACE(n, m) c+ U >_ j-DSPACE(n, l).
Proof of Lemma 3. The first part follows from Seiferas, Fischer and Meyer

[5, Cot. 21. The second part can easily be shown using a diagonal argument similar
to that of [6].

Proof of Theorem. We only prove part (i) of the theorem. Parts (ii)-(iv) are
similarly shown using Lemma (part (ii)) and Lemma 2.
Suppose 1-NSPACE(n, m + 1)_c I_NSPACE(n, m) for some m >= 1. Then
by Lemma 1,

(1) 1-NSPACE(n, (m + 1)) _c 1.NSPACE(n,mk + 3) for all k => 1.

Consider (m + 1)kr and m(k + 1)r _+_ 3. Then

(2)
(m +1)kmkr (m+l)kE’m

m(k+ 1)" + 3
(3) mk

dmckr-’

Moreover,

for some constants c and d.

k log2 .m +
m m

(5) log2 dmck’-I ck"-1 log2 m + log2 d.

We conclude from (2)-(5) that there exists ko >_- such that

(6) (m + 1)kr >= mk +1) + 3 for allk>_ko.

POLYNOMIAL-SPACE RECOGNITION 187

It follows from (1) and (6) that 1-NSPACE(nr, (m + 1)k")
_

I_NSPACE(nr, mk + 3)
for all k _>_ ko. This contradicts Lemma 3.

For the case r 1, we have the following corollary, which settles a question
posed in [5].

COrOLLArY. For each m >= 1, we have
(i) 1-NSPACE(n, m) 1-NSPACE(n, m + 1),

(ii) 1-DSPACE(n, m) 1-DSPACE(n, m + 1),
(iii) 2-NSPACE(n, m) 2-NSPACE(n, m + 1),
(iv) 2-DSPACE(n, m) 2-DSPACE(n, m + 2).

Acknowledgment. I would like ,,to thank Sartaj Sahni for helpful discussions
concerning this work.

REFERENCES

1] S. A. CooI, A hierarchyfor nondeterministic time complexity, Proc. 4th Annual ACM Sympos. on
Theory of Computing, Denver, Colorado, 1972, pp. 187-192.

[2] O. H. IBARRA, A note concerning nondeterministic tape complexities, J. Assoc. Comput. Mach.,
19 (1972), pp. 608-612.

[3] --., On two-way multihead automata, J. Comput. System Sci., 7 (1973), pp. 28-36.
[4] S. RUBY AND P. C. FISCHER, Translational methods and computational complexity, IEEE Conf.

Record on Switching Circuit Theory and Logical Design, Ann Arbor, Michigan, 1965,
pp. 173-178.

[5] J. I. SwxFErt,s, M. J. FISCHER AqD A. R. Mzwr, Refinements of the hierarchies of time and tape
complexities, 14th Annual Sympos. on Switching and Automata Theory, Iowa City, Iowa,
October 1973.

[6] R. E. STEARNS, J. HARTMANIS AND P. M. LEWIS II, Hierarchies of memory limited computations,
IEEE Conf. Record on Switching Circuit Theory and Logical Design, Ann Arbor, Michigan,
1965, pp. 179-190.

SIAM J. COMPUT.
Vol. 3, No. 3, September 1974

OPTIMUM COMMUNICATION SPANNING TREES*

T. C. HU-

Abstract. Given a set of nodes N (i 1, 2, ..., n) which may represent cities and a set of require-
ments ria which may represent the number of telephone calls between N and Nj, the problem is to
build a spanning tree connecting these n nodes such that the total cost of communication of the span-
ning tree is a minimum among all spanning trees. The cost of communication for a pair of nodes is
r;a multiplied by the sum of the distances of arcs which form the unique path connecting Ni and N
in the spanning tree. Summing over all () pairs of nodes, we have the total cost of communication
of the spanning tree. Note that the problem is different from the minimum spanning tree problem
solved by Kruskal and Prim.

Key words, communication spanning trees, cut-tree

1. Introduction. Suppose we are given a set of n nodes N (i 1, ..., n)
and the distances do between Ni and Nj. These n nodes may represent cities which
need to communicate with each other. We are also given a set of requirements ri,
(which may represent the number of telephone calls between N and Nj). The
problem is to build a spanning tree connecting these n nodes such that the total
cost of communication of the spanning tree is minimum among all spanning trees.

The cost of communication of a given spanning tree is defined as follows.
For a pair of nodes N and Nj, there is a unique path in the spanning tree between
N and N.. The distance of the path is the sum of distances of links in the path.
The cost of communication for the pair of nodes N; and N is r; multiplied by the
distance of the path. Summing over all () pairs of nodes, we have the cost of
the spanning tree. For example, the distances between six nodes are shown in
Fig. 1, and the requirements between the six nodes are shown in Fig. 2.

The cost of the spanning tree in Fig. 3 is

r12(2 + 2) + r13(2 + 3) + r14(2 + 4 + 3) + + r46(3 + 4) + r56(4

10(2+ 2)+0(2+ 3)+0(2+4+ 3)+ + 2(3 +4)+ 3 x 4

225.

This problem of constructing optimum communication spanning trees will
be referred to as the general problem. In this paper, we shall not deal with the
general communication spanning tree, and shall devote ourselves to two special
cases of this general problem.

Case A. The distances d are all equal to one, while the requirements ri are
arbitrary. We shall call the optimum spanning tree in this case the
optimum requirement spanning tree.

Received by the editors October 4, 1973, and in revised form January 31, 1974.
]- Mathematics Research Center, University of Wisconsin--Madison, Madison, Wisconsin. Now

at University of California at San Diego, La Jolla, California 92037. This work was sponsored by the
United States Army under Contract DA-31-124-ARO-D-462 and by the National Science Foundation
under Grant GJ 28339.

188

OPTIMUM COMMUNICATION SPANNING TREES |89

Case B. The distances dij are arbitrary, while the requirements rij are all
equal to one. We shall call the optimum spanning tree in this case
the optimum distance spanning tree.

The problem of optimum distance spanning tree was proposed to the author
by Professor F. Maffioli. The general problem and Case A were formulated by
the author. Both Case A and Case B are much harder problems than the well-
known problem of minimum spanning tree (see Kruskal 8] and Prim [9).

(dij not shown are assumed to be 4)

FIG. 1. Distances between six nodes

4

(r;j not shown are assumed to be zero)

FIG. 2. Requirements between six nodes

FIG. 3. A spanning tree

190 T.C. HU

2. Optimum requirement spanning trees. Throughout this section, we have

d and r arbitrary as mentioned in Case A.
First we shall give a few definitions and deal with some seemingly unrelated

notions. All these definitions and concepts are illustrated in more detail in Hu
7, pp. 131-142].

Consider a network N of n nodes with undirected arcs Aj connecting nodes
N and Nj. An arc has an arc capacity b (b b for all i, j). A cut, denoted by
(X,) where X is a subset of nodes of the network and . is its complement, is
the set of arcs Aj with N X and Nj ..

The capacity of a cut (X, .) is denoted by b(X,). The capacity of a cut is
the sum of bj of all arcs in the cut. Since bj bj, we have b(X,) b(Y,, X).
Two cuts (X, .) and (,) are said to cross each other if and only if each of the
four sets X f3 Y, X f3 , . f’l Y and . f-I contains at least one node. A set of
cuts is said to be noncrossing if no two of them cross each other.

The number of arcwise-disjoint paths between two nodes Np and N is
denoted by fpq, which is the value of the maximal flow from N to N (see Ford
and Fulkerson 4]). By the max-flow min-cut theorem [4], there always exists a
cut (X, X) with Nn X and N X such that b(X,X)= f. The cut (X,X) is
called a minimum cut since it has the least capacity of any cut separating N and Nq.

The algorithm of Gomory and Hu [6] constructs a spanning tree with the
following properties"

(i) Each link of the spanning tree has a value vj associated with it. If we
remove the link with value vj, so that the network is disconnected into
two components, say X and X, then vj b(X,X) and (X, X) is a mini-
mum cut of the original network.

(ii) The maximal flow value f between any two nodes N and Nq of the
original network is

fvq min(vva,..., vii,"’, vtq),
where vva,..., vij,..., vta arc values associated with links in the trec
which form the unique path connecting Nv and Na in the tree.

From now on, the spanning tree constructed by Gomory and Hu [6] will be
referred to as the cut-tree. The cut-tree is obtained by doing n maximal flow
problems, each problem taking at most O(n) applications of the Ford-Fulkerson
labeling procedures [5], (see Dinic [2] and Edmonds and Karp [3]). Thus the
algorithm of constructing the cut-tree can be thought of as O(n") algorithm. Now
we shall establish a few lemmas.

LENMA 1. A spanning tree with n links corresponds to a set of n 1 non-
crossing cuts uniquely.

Proof. Remove any link of the spanning tree; this will disconnect the tree
into two components, say T and T2. Then let this link correspond to the cut
(T, T). Do the same process to the tree T or Tz. Thus from any spanning tree,
we get a set of n noncrossing cuts. Conversely, from a set of n noncrossing
cuts, we can construct the spanning tree as follows. Take a cut (X, X); we can
draw two supernodes connected by a link (each supernode represents a set of
ordinary nodes symbolically); in one supernode, we list the names of nodes in
X, and in the other supernode, we list the names of nodes of X. This creates one

OPTIMUM COMMUNICATION SPANNING TREES 191

link of the spanning tree. Now consider another cut (Y, Y). Since (Y,) does not
cross (X,), we have Y X and F = (or Y X and Y c); then we can
create a tree with three supernodes Y, (X Y) and X as shown in Fig. 4. After
n steps, we create a spanning tree of n links.

FG. 4

THEOREM 1. Given a set of requirements rj and a spanning tree T, the cost of
communication of T for the set rj is equal to the sum of capacities of the n
noncrossing cuts of a network N. (The n cuts are determined by the edges of
T). The network N has the same set of nodes as T and has arc capacities big rig.

Proof. Since dj 1, the cost of communication of a pair of nodes N and
Nq in a spanning tree is equal to rp multiplied by the number of links in the path
connecting Np and Nq. Summing over () pairs of nodes, we have the cost of the
spanning tree. We can also calculate the cost of the spanning tree in an alternate
way. For a given link of the tree, we add the rpq’S which use the link and let the
sum be attached to the given link; summing over n links, we have the cost
of the spanning tree. In calculating the cost of the spanning tree in this manner,
the sum of the rp’s for a given link of T is the same as the capacity of the cut
corresponding to that link. Any single requirement rpq which is not a direct link
in the spanning tree T is counted exactly the same number of times as the number
of links which join Np and Nq in T. Thus the cost of communication of the span-
ning tree T is numerically equal to the sum of the capacities of the n non-
crossing cuts in N which correspond to the links of T.

LEMMA 2. The sum of the capacities of n noncrossing cuts represented by
the cut-tree is less than or equal to the sum of the capacities ofany n noncrossing
cuts.

Proof. See Lemma and Adolphson and Hu 1, Thm. 1].
THEOREM 2. The cut-tree is an optimum requirement spanning tree.

Proof. This follows from Lemmas and 2 and Theorem 1.
For example, if a network of six nodes has requirements as shown in Fig. 2,

then according to Theorems and 2, we regard these rj as arc capacities of a
network. Then from the algorithm of Gomory and Hu (see [6] or [7], where the
example is illustrated in detail), we obtain a cut-tree as shown in Fig. 5, with total
cost of 77, which is exactly the sum of the n- cut capacities. (77 18 + 17
+ 13 + 14+ 15.)

192 T.C. HU

13

15

FIG. 5. Optimum requirement spanning tree

3. Optimum distance spanning trees. In this case, rij 1, and di are arbitrary
except that they satisfy the regular triangular inequality

dij+djk>=dk for alli,jandk.

Throughout this section, we shall assume that there are n nodes and n __> 4.
We define a node in a tree to be an outer node if the degree of the node is one, an
inner node if the degree of the node is two or more. A tree is called a star-tree if
there is only one inner node in the tree.

In general, an optimum distance spanning tree may not be a star-tree. We
shall define a sufficient condition for the optimum distance spanning tree to be
a star-tree and then state a simple algorithm for getting the optimum distance
spanning tree in this case.

First, we introduce a new way of calculating the cost of a distance spanning
tree. For a given spanning tree, we calculate the cost of a link as follows. If the
link of length dj is removed and the network is disconnected into two sets, one
containing k nodes and the other n- k nodes, then the cost of the link is
dij(k)(n k). Summing over all n links of the tree, we have the cost of the
tree. Note that the cost of a link depends only on di and the number of nodes on
both sides of the link, but does not depend on how the two subtrees are arranged
on both sides.

LEMMA 3. If all the dij are the same, then the optimum distance spanning tree
is a star-tree.

Proof. Let the dj d for all the links. For every link in a star-tree, the cost
of the link is d(1)(n 1). If the spanning tree is not a star-tree, then at least one
link will have k nodes at one end and n k nodes at the other end, where k => 2
and n k >__ 2, so the cost of the link is d(k)(n k). Since k(n -/) > (1)(n 1)
for n >__ 4, this completes the proof.

We shall find a sufficient condition for an optimum distance spanning tree
to be a star-tree. Roughly speaking, the sufficient condition requires all links do
not differ too much in length.

If we erase all outer nodes from a tree of n nodes (which is not a star-tree),
then the remaining is again a tree formed by inner nodes. This tree will be referred
to as the inner tree T. in the tree T, there again must be some nodes of degree one,
and these nodes are called extreme inner nodes. In Fig. 6, there are five inner

OPTIMUM COMMUNICATION SPANNING TREES 193

FIG. 6

nodes and Na, Nc, Nw, are extreme inner nodes. Two nodes are called neighbors
if they both are adjacent to the same link. For example, No and Ne are neighbors.

TI-IZOREM 3. In the distance spanning tree problem, let a, b and c be the distances

of three sides of any triangle in the n-node network (n >= 4), where

(1) a =< b =< c.

If there exists a positive not larger than (n 2)/(2n 2) such that

(2) a + tb >= c

for all triangles in the network, then there exists an optimum distance spanning tree
which is a star-tree.

Note that the smaller the value of t, the more restrictive is the inequality. If
0, then it restricts all sides of any triangle to be of equal length. If 1, it

reduces to the regular triangular inequality. Since the value of must be less than
one, (2) is a stronger condition than the regular triangular inequality. Note also
that (1) and (2) imply five other inequalities, namely ta + b > c, tb + c >= a,
b+ tc >= a, ta + c >= b and tc + a >= b.

Proof. It is sufficient to show that we can reduce the number of inner nodes
in any spanning tree (which is not a star-tree) without increasing the cost. So, let
T be any spanning tree which contains at least two inner nodes. Let Nq be an
extreme inner node in T with a neighbor Np which is an inner node. Since Nq is
an extreme inner node, all its neighbors (except Np) must be of degree one in the
tree T. Call these nodes Ni (i 1, 2, ..., k 1). Without loss of generality, we
can assume that (n/2) => k. This is shown in Fig. 7, where the distance between
Np and Ni is denoted by ci.

Let us construct a new spanning tree T’ which is the same as T except the
nodes N (i 1, 2,..., k 1) are connected to Np directly. In the new tree T’,
Nq is no longer an inner node. Thus the number of inner nodes is decreased by
one. We shall show that the cost of T’ is not greater than the cost of T. If we apply
this idea recursively to the tree T’, T", ,.., then we will finally get a tree T* which
is a star-tree. Since the part of the tree to the left of Np is exactly the same for both
T and T’, we need only calculate the cost for the part to the right of Np. For the

194 T. . i-itJ

FIG. 7

k-I nodes

tree T, this cost is

k-1

(3) bok(n k)+ a(1)(n- 1).
i=1

The corresponding cost for T’ is

k-1

(4) bo(1)(n- 1)+ ci(1)(n- 1).
i=1

The net decrease of cost in changing from T to T’ is

(5) (n 1) a- c + bo
L-I n-

The decrease will be positive if each term in (5) is positive, namely,

n-k-1
(6) a+ bo>=C for alli.

n-1

For a fixed n, (n- k- 1)/(n- 1) is smallest when k is largest; that is, when
k n/2. Thus it is sufficient to have

n-2
2b>c for alli.(7) a +

2n-

As noted before, assuming a =< bo _-< c gives the strongest inequality, and we
have the statement of the theorem.

If the sufficient conditions (1) and (2) are satisfied, then the optimum distance
spanning tree will be a star-tree. We can just calculate the n sums jdj
(i 1, ..., n) and let

dsj m}n dj;

then the optimum distance spanning tree is a star-tree with Ns as the star. Note
that if we have the distances shown in Fig. 1, (1) and (2) are not satisfied, yet the
optimum distance spanning tree is a star-tree with N2 as the star. To check if
(1) and (2) are satisfied, we can use a procedure similar to that used in the Appendix
of [6].

OPTIMUM COMMUNICATION SPANNING TREES 195

REFERENCES

[1 D. ADOLeHSOrq and T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math., 25 (1973), pp.
403-423.

[2] E. A. DINIC, Algorithmfor solution ofa problem ofmaximalflow in a network with power estimation,
Soviet Math. Dokl., 11 (1970), pp. 1277-1280.

[3] J. EDMONDS AD R. M. KARP, Theoretical improvements in algorithmic efficiency for network flow
problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.

[4] L. R. FORD, JR. AND D. R. FULKERSON, Maximal flow through a network, Canad. J. Math., 8
(1956), pp. 399-404.

[5] , A simple algorithm for finding maximal network flows and an application to the Hitchcock
problem, Ibid., 9 (1957), pp. 210-218.

[6] R. E. GOMORY AND T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961),
pp. 551-570.

[7] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, Mass., 1969.
[8] J. B. KRUSKAL, On the shortest spanning tree ofa graph and the traveling salesman problem, Proc.

Amer. Math. Soc., 7 (1956), pp. 48-50.
[9] R. C. PRIM, Shortest connection networks and some generalizations, Bell System Tech. J., 36 (1957),

pp. 1389-1401.

SIAM J. COMPUT.
Vol. 3, No. 3, September 1974

POLYNOMIAL MULTIPLICATION, POWERS AND
ASYMPTOTIC ANALYSIS: SOME COMMENTS*

RICHARD J. FATEMANt

Abstract. This paper examines multiplication and powering of dense symbolic polynomials, in
one or several variables, with "nongrowing" coefficients (e.g., coefficients in a finite field). We use a
"completely dense" model for polynomials, in order to present worst-case analyses.

In this context, the use and abuse of asymptotic analysis techniques is discussed. Six algorithms
for computing polynomial powers are analyzed in terms of the time required for execution on a typical
digital computer, and procedures are derived for choosing the fastest algorithm, exactly, as a function
of degree, number of variables, and power to be computed. The case of sparse polynomials is discussed
in a separate paper [6].

Key words, polynomial multiplication, polynomial powers, exponentiation, computing time
analysis, algorithmic analysis, finite Fourier transform, algebraic manipulation, modular arithmetic

1. Introduction. The choice of an appropriate computer algorithm can have
an enormous influence on the size and complexity of problems which can be
solved in a reasonable time. In situations where several algorithms are possible,
it is frequently important to characterize the problem domains for which each is
superior.

This paper discusses asymptotic analysis, and some of the alternatives to it,
as a tool to evaluate algorithms. We use the context of computing powers of
polynomials, a problem which has been discussed in [2], [4], [5], [6], [9], [11],
[13] and [14].

The method of asymptotic analysis of algorithms is to characterize the speed
or efficiency of an algorithm by some simple parameterized expression. Thus
algorithm A may be order n2 (--O(n2)) and B may be O(n log n), where n is a
measure of the size of the problem. This implies that for all n > some N, algorithm
A is more time-consuming than algorithm B. For smaller n, it is usually the case
that algorithm A is faster than B.

It becomes critical, in the cases of interest in this paper, to find N, the cutoff
point between algorithms, in order to decide between alternative algorithms. We
are, in fact, attempting to determine the best algorithm or combination of algo-
rithms to use as a system program in MACSYMA [1], [17].

It has been suggested that one might empirically find the "constants" CA
and CB characterizing algorithms A and B as running in times CAn2 and CB n log n,
respectively, and thus give the asymptotic analysis some precision in predicting
the cutoff point, N. This is not necessarily reasonable, simply because empirical
data may reflect nonasymptotic terms in the algorithm’s cost function. For
example, n2 -4- 1000n for 0 < n < 10 can hardly be characterized by Cn2.

Received by the editors February 12, 1973.
]" Department of Mathematics and Project MAC, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts. This work was supported in part by Project MAC, an MIT interdepartmental
laboratory sponsored by the Advanced Research Projects Agency, Department of Defense, under
Office of Naval Research Contract N0014-70-A-0362-0001, and in part by the MIT Department of
Mathematics under National Science Foundation Grant GP-22796. Now at Department of Electrical
Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720.

196

POLYNOMIAL MULTIPLICATION 197

The approach which we follow, as nearly as possible, is to derive exact
formulas for the number of operations an algorithm requires, as a function of n,
and then compare these formulas. These formulas may be unwieldy to manipulate
by hand, but since they can be manipulated by computer (e.g., in MACSYMA
[1], [17]), we feel the approach is both accurate and tenable.

We have at our disposal another exact method for finding cutoff points: we
simply program the algorithms and time them. This has the major disadvantage
that different implementations may have drastically different cutoff points. In the
experiments performed for this paper, we compared the results of timings, and
the actual counts of multiplications/divisions, additions/subtractions, and ex-
ponentiations, to the run times. It was satisfying to note that actual computation
times were closely proportional (after removing the perturbing effects of the
counting routines) to the total of these counts, and reasonably proportional to
just the multiplications/divisions. This implied that our implementations were
reasonable and, in a "machine-independent" sense, we were finding cutoff points
based on minimizing the number of arithmetic operations used by the algorithms.

Using a computer to actually run algorithms gives us a particularly useful
hold on reality. It is easier to see when the true cutoff point is of no practical
interest:the problem simply exceeds the bounds of the practically computable.
In fact, we .have decided that if a computation requires more than 2 minutes of
computer time in the system described in 1, it is an exceedingly large and un-
usual computation of a polynomial power. We believe an algorithm which
performs well only outside that 2 minute region is not a good choice for problems
encountered by algebraic manipulation systems, and cannot, in good faith, be
touted as such, regardless of its asymptotic performance.

In the preceding discussion, we have assumed the existence of some param-
eter, n, which characterizes a problem. In the case of powering polynomials, a
number of parameters emerge. We can use v for the number of variables (or
indeterminates) in the polynomial, d for its (maximum) degree in each variable,
n for the (integer) power we wish to compute, and other parameters to characterize
the sparseness of the polynomial and the size of the coefficients. We use only
(n, d, v) as parameters, although the sparseness question is quite important, and
is examined in 6] and [14]. The size of the coefficients can be briefly dispensed
with: let us specify that all coefficient computations are done in a finite field, so
that multiplication and addition costs do not grow with the number of digits in
the result. The analysis can be extended to the case of arbitrary integer coefficients
by the use of the Chinese remainder algorithm. This is explained, for example, in
I7] and I13]. Alternatively, one might imagine the coefficient arithmetic to
be "floating-point" finite-precision arithmetic, so that the costs again remain
constant.

We will be dealing with a particular model of polynomials which corresponds
to "worst-case" assumptions. We need a few definitions.

A univariate (one-variable) polynomial of degree d is dense if it has no zero
coefficients. That is, it has d + terms. A multivariate polynomial with v variables
where each variable x l, ..’, xv occurs to maximum degree d is called uniformly
dense to degree d in each of v variables. That is, f fnx + + fo, where each
of the f are polynomials uniformly dense to degree d in each of v variables.

198 RICHARD J. FATEMAN

A polynomial in 0 variables is an integer. We define the size of a polynomial f,
size(f) to be the number of monomial terms in f. For example, size(f) (d + 1)v
iff is uniformly dense to degree d in each of v variables.

The cost of an algorithm can be equated to the number of elementary oper-
ations it requires. In the algorithms examined here, this is usually proportional
to the number of required coefficient multiplications/divisions, and thus we will
derive, in most cases, only costM, the multiplication cost for an algorithm. For the
most part, this is sufficient, although cOStA, the addition cost, is in one case sig-
nificant enough to require examination.

We would like to emphasize, as is done in 10] and 19], that without empirical
evidence to confirm that timings do correspond to the quantities we are analyzing,
the analysis would be irrelevant. In fact, timing data presents a strong confir-
mation of our techniques, and demonstrates that intuition based on the analysis
in this paper is applicable to the problem at hand.

2. Some history. It is fairly well known, now, that two n-bit integers can be
multiplied by an "FFT method" to get a 2n-bit result in O(n log (n)log (log n))
operations. Few uses have been made of this algorithm because it is useful only
for very large n. It is also well known that the same two integers may be multiplied
in O(n L585’’’) operations, yet uses of this algorithm are also infrequent. Knuth
[15] gives an extensive account of the integer multiplication problem.

In fact, to our knowledge, all multiple-precision integer multiplication pro-
grams in algebraic manipulation systems use an 0(/’/2 method which corresponds
to "classical" multiplication.

This gap between "best known" algorithms and programming practice is
sometimes harmless. It separates "theoretical" computational complexity from
"practical" algorithm analysis and programming. Unfortunately, the separation
of these two disciplines occasionally causes the use of(in fact) inefficient algorithms,
and tends to obscure analyses of algorithms based on less-than-optimal sub-
algorithms.

If we turn to a logical extension of the n-word integer multiplication problem,
namely the multiplication of univariate polynomials of degree d n- 1, we
find that a gap of the unfortunate variety prevails:as noted in 15], there are
polynomial multiplication algorithms of O(d2), O(dL585"’’) and O(d log (d)). Ex-
cept for our own work, all practical polynomial multiplication programs appearing
in the context of an algebraic manipulation system are O(d2). Polynomial powering
algorithms which assume polynomial multiplication of dense polynomials taking
O(d2) have been analyzed by Heindel [11] and Horowitz 13]. In fact, for the
class of dense polynomials used in these papers, we will show that using faster
multiplication schemes not only yields the answer in less time, but also reverses
the choice of the "best" powering algorithm rather dramatically. Specifically,
Heindel and Horowitz prove that for a sufficiently large polynomial P, computing
P" P. (P P) is faster than (assume n 2"), P" ((p2)2 ...)2. Their proofs
depend implicitly on polynomial multiplication being O(d2). If such is not the
case, their choice is, for most problems, the slower of the two methods.

Of the six powering algorithms discussed in 4, RMUL (repeated multi-
plication) and RSQ (repeated squaring) are the rather obvious ones above, SUMS

POLYNOMIAL MULTIPLICATION 199

is a venerable method usually applied to power series [8], 15], EVAL was first
proposed in [13], and the first implementation ofBINOM and FFT were described
in an earlier version of this paper 5]. In [9], Gentleman suggested the use of the
FFT, although no details were supplied.

Another surprising result to one who uses asymptotic analysis is that an
evaluation-interpolation homomorphism algorithm with favorable asymptotic
growth rates is of little use over most of the region of practical problems.

3. Some results on polynomial multiplication.
TIORFM 3.1 (Classical polynomial multiplication). The product of two poly-

nomials fand g of size s and can be computed with st coefficient multiplications, and
no more than st coefficient additions. That is, at worst, costM st, costA st 1.

Proof. The classical method of polynomial multiplication, term by term,
clearly uses st multiplications. Even if all the terms produced "collapse" into a

single term, no more than st additions could be required.
THEOREM 3.2 (Binary splitting multiplication). Let f and g be univariate poly-

nomials in the variable x. If s- size(f)= 2 and size(g)<__ s, then f.g can be
computed with costM (s) __< S1g23, cOStA (S) =< (17/3)S1g23 8S + 3.

Proof. Let us first present the algorithm (similar to 15, p. 258])"
Algorithm" Split multiplication of polynomials.
Input" (f, g) polynomials of size __< 2k.
Output" f g.
1. Iff or g is a monomial, use classical multiplication. Otherwise, let

2 2f flx +fo and g glx +go,

where sizes off1, f0, gl and go <- 2k-1.
2. Compute A fl"gl, and C fo’go by a recursive application of this

algorithm. (A and C are of size 2 1.)
3. Compute B (fl + fo)’(gl + go) by a recursive application of this

algorithm.
4. Compute B B A C. (B is of size 2k 1.)
5. Return Ax2’ -+- Bx2’-1 + C. (This is a shifting operation, and requires

no multiplication.)
Let us analyze the specific case in which f and g are of degree 2r 1, and

thus are of size 2r. Then f flxr + fo, where f and fo are of degree r (size r)
and similarly for g. In step 2, A and C are computed by applying this algorithm
to polynomials of degree r- (or size r), and similarly in step 3, the multi-
plication is of polynomials of size r. Thus

costM (2r) 3 costM (r) costM (s) sg23.

For cOStA, if r 1, cOSta (2) 4 (simply count the additions). For r > 1,
consider each step separately in cOSta (2r):

Step 2. 2 costA (r) is incurred by the two smaller multiplications.
Step 3. cOSta (r) for the lower multiplication, plus (fl + f0) and (gx + go),

each of cost at most r. Total for step 3:2r + costA (r).
Step 4. B, A and C are of size 2r- 1, so the two polynomial subtractions

(costing as much as additions) cost 2(2r 1) 4r 2.

200 RICHARD J. FATEMAN

Step 5. This is a tricky one. The degree of C is sufficient so that some terms
from it combine with terms from Bxr. Specifically, C is of degree 2r 2, so that
r- 2 terms coincide with Bxr; this addition is of cost r- 2. Similarly, B is
of degree 2r 2, so that r 2 terms coincide with Ax2r. Total addition cost is
2r 4.

Thus
costA (2r) 3 costA (r) + 8r 6,

cOStA(S) 3 costA (S/2) + 4S 6

-S1g23 8S -- 3.

Thus while classical multiplication takes about costa + coster 2S2, "split"
takes about (20/3)s x’585. Split should become better when s is about 19. Actually,
most implementations of split will encounter significant further costs for shifting,
etc. We have been unable to implement split so that it requires less time in the
univariate case, even for s > 40.

Let us examine the situation for several variables.
THEOREM 3.2a. If f is dense in v variables to degree d 2k 1, and g is a

polynomial which has no higher degree than f in any variable, f g may be computed
with costM (v, d) (d + 1)vlg23.

Proof. The proof is trivial by induction on v, the ntmber of variables, and
the result of Theorem 3.2. V1

To compare these results with those of Theorem 3.1, classical multiplication,
if we compare costM in each case, and neglect lower order effects, we compare

split s 1’585v to classical S2v,

For small s and v, the additions and additional bookkeeping slow split down, so
that empirical studies are required.

If we really want to multiply polynomials rapidly, it is clear that the best
algorithm for a given problem should be chosen. In a recursive algorithm such
as "split", in which subproblems are generated, we require a test which can make
this choice expeditiously. A simple way of doing this heuristically (in our im-
plementation) is to test at each level of multiplication of polynomials in subsidiary
variables, whether either input is univariate, in which case it generally pays to
use classical multiplication.

An exact "formula" for the result of Theorem 3.2a has been derived using
dense assumptions, when both inputs are characterized by the same (but arbitrary)
degree d, and the same (but arbitrary) number of variables, v. The size need not
be a power of 2. The formula is phrased in terms of a computer program in
MACSYMA 1]"

split(d, v)"= splitl(d, v, d + 1)$
splitl(d, v, h) "= block ([,
ifv then return (d + 1) T 2,
if h then return (split(d, v 1)),
return (splitl(d, v, hi2) + 2 * splitl(d, v, (h + 1)//2)))$
The//indicates integer quotient, and * indicates multiplication. The symbol

is used to define a function.

POLYNOMIAL MULTIPLICATION 201

The above program reflects the decision to use classical multiplication for
univariate cases (v 1), because of the empirical observation that we cannot
implement split efficiently for 1-variable cases in MACSYMA.

It is probably worth pointing out that our idealized worst-case situation is
not universally appropriate. If the two inputs are of widely disparate sizes, or if
they are not dense, the splitting technique tends to push the computation toward
the worst-case situation of two equally large and completely dense polynomials.
For this reason, caution should be exercised in using this algorithm. In [11] and
I13], the worst-case analysis assumptions make this splitting algorithm quite
appropriate.

There is yet another possibility for faster multiplication, analogous to the
fastest known integer multiplication technique.

THEOREM 3.3 (FFT multiplication). /f s size(f), and size(g)<= s, then
f.g can be computed with cOStM (S) cOStA (S) O(S log S).

Proof. Let us first present a sketch of the algorithm. A detailed description
can be found in Bonneau [2] or [4], and the exact method of programming is not
relevant to our discussion. Basically it looks like this for univariate f and g:

1. Compute a "discrete Fourier transform" of the sequence of coefficients
off, extended (with zeros) to be of at least the size of the answer. Do the
same for g.

2. Multiply, term by term, the corresponding elements of the transformed
sequences.

3. Compute the inverse transform of the result.
It can be shown (again, refer to Bonneau [4] or to Pollard [18]) that steps

and 3 may be done in O(s log s) coefficient operations, and step 2 can be done,
clearly, in O(s).

Efficient implementation of the Fourier transform has been a problem, but
it is clear at this point that for moderately large multiplication problems, or for
small problems involving many operations which can be done rapidly in the
transform space (e.g., polynomial powering) the "FFT" approach is quite practical.
We will return to this in the next section.

4. Algorithms for computing powers of polynomials. We will briefly discuss
the algorithms RMUL and RSQ presented in [11] and 13] and show how various
multiplication algorithms affect the costs. We then move on to detailed con-
siderations of a number of additional algorithms.

In each of the following sections, we discuss an algorithm which computes a
power n of a polynomial f which is completely dense to degree d in each of v
variables.

4.1. Algorithm RMUL (repeated multiplication).
4.1.1. Description of RMUL. RMUL successively computes f2__ f.f,

f3__f.f2,...,f,=f.f,-.
4.1.2. Analysis of RMUL. For classical multiplication, the costM is easily

seen to be size(f), size(f) + size(f), size(f 2) + + size(f), size(f). More
precisely, since size(f) =< (id + 1), the cost for classical multiplication is

n-1 n-1

(4.1.2a) (d / 1) (id / 1)v< (d / 1):v iv< (d / 1)2VnV+l/(v / 1).
i=1 i-1

202 RICHARD J. FATEMAN

Note that the left side of (4.1.2a) is an exact count. It is not "asymptotic".
It may be evaluated by hand or computer to predict exactly how many multi-
plications will be required, given n, d and v. Although it assumes no zero co-
efficients are generated, this is a reasonable prospect, given the input assumptions.
(It is fulfilled, for example, if the input coefficients are floating point numbers
greater than 0.)

A computerized formulation of (4.1.2a) has a particular advantage in that
MACSYMA can evaluate the program, exactly, when only n, or only v is supplied.
Thus in MACSYMA,

rmul(n,d, v) := (d + 1)]" v* SUM((/* d + 1)]" v, i, 1, n 1)$

(4.1.2b)
rmul(n, d, 2);

(1/6)((2d4 + 4d3 + 2d2)n3 + (-3d4 + 9d2 + 6dln
+ (d4 4d3 5d2 + 6d + 6)n 6d2 12d 6)

It would seem reasonable to improve RMUL by using faster multiplication
methods, but it can be shown that other methods of polynomial multiplication
do not thrive on the unequal-sized multiplicands produced by RMUL. Therefore
we move on to other powering methods.

4.2. Algorithm RSQ (repeated squaring).
4.2.1. Description of RSQ. RSQ computes f" by computing a sequence of

polynomials based on the binary expansion of n. For example, if n 7, it computes
fz f.f, f3 f.fz,f f.fz, f7 f3.f. If n 8, f8 ((f.f)2)2, which
is why we call it repeated squaring.

More precisely:
1. Set Q to 1. Set Z tof.
2. Set I to the rightmost bit of n (in binary). Shift n right by one bit. If I is

0, go to step 4.
3. If Q equals 1, set Q to z, otherwise set Q to Q. z.
4. If n is 0, return Q. Otherwise, set Z to Z. Z and go to step 2.

4.2.2. Analysis of RSQ. Let us consider RSQ only for n 2. It may seem
that we are giving RSQ some sort of advantage, but closer analysis can be done
which shows this is not necessarily so. It "evens out" in the long run.

Heindel 11] and Horowitz I13] show that using classical multiplication,
RSQ is O((dn)2V). They therefore reject it, since RMUL is only O(d2Vn+ 1).

The costM for RSQ using split multiplication is approximated by

j-1 j-1

size(f2’)1"58 (2id+ 1)L8v
i=0 i=0

j-1

(4.2.2a) < (d + 1)LsS’ (2L585v)
i=0

< (n(d + 1))L8’/(3’- 1)= O((nd)LS8S).
A more exact rendition of (4.2.2a) can be given as a MACSYMA program"

for n 2j, an exact formula is

rsq(n, d, v) SUM(split(2 T * d, v), i, 0, ceillog2(n) 1)$

POLYNOMIAL MULTIPLICATION 203

where ceillog2 computes the smallest integer greater than the base-2 logarithm
of n. For n not a power of 2, this is a gross overestimate. An analysis of split for
unequal-sized inputs removes the power-of-2 restriction, but entails needless and
lengthy explanations.

To see how good this is compared to RMUL, we may look at a typical large
case, n 4, d 3, v 3. At this point Horowitz [13] indicates that RSQ is twice
as time-consuming as RMUL, when they are both using classical multiplication.
In fact, using split multiplication, RSQ uses 31921 coefficient multiplications,
while RMUL, using classical multiplication, requires 90048 coefficient multi-
plications. RSQ is faster than RMUL for almost all problems of smaller size,
the exceptions being large n and v > 2, combined with small d (e.g., n 16, v 3,
d<4).

4.3. Algorithm SUMS.
4.3.1. Description of SUMS. SUMS is a clever method described by Knuth

[15] for raising a power series to a power. (See also Fettis [8]).
Briefly, iff is a univariate polynomial, f =ofixi, then

(4.3.1a)

nd

g f" gix where go f
i=0

min(d,i)

gi
if J: ((n + 1)j-i).f.gi_j, _< <_ nd.,

The obvious extension to multivariate cases is a poor method, since division
by fo is expensive. If, however, we multiply f by a new "variable", f, such that
fo’f 1, and compute g*= (f.f)" by SUMS, finally substituting f) for
(f)"-J) in g*, we obtain the correct answer.

4.3.2. Analysis of SUMS. For the univariate case, we can itemize costM as
follows"

computation of g0’l exponentiation.
computation of g’2 multiplications for each of the min (d, i) iterations of

the sum. For 0 < < d, the cost to compute eachg is 2i, totaling f2 2i d(d 1).
Ford <= <= nd, thecosttocomputeeachgis2d, totaling’=n2d-- 2d(nd- d + 1).
There are also nd divisions by ifo. Adding all these costs gives

(4.3.2a) costM (2n 1)d2 + (n + 1)d.

This is exact, and not an asymptotic result.
This contrasts strongly with the previous methods in being linear in n, in-

stead of quadratic. Since the leading coefficient is 2n rather than n2/2 as in
RMUL, univariate SUMS does not become faster than RMUL until n > 4.
However, for n > 4 SUMS rapidly becomes far superior. Only the FFT method
is better for large n and d.

For the several variable case, the algorithm is complicated by the back-
substitution, and by the variety of sizes of the coefficients. The algorithm loses
its superiority, and can be shown [5] to be, for v > 1,

(4.3.2b) O(nV(d + 1)zv + n + l(d + 1)z- 1).

204 RICHARD J. FATEMAN

Since SUMS turns out to be both difficult to program for v > 1 and not very
fast, we can ignore the multivariate consequences.

4.4. Algorithm EVAL (evaluation homomorphism).
4.4.1. Description of EVAL. EVAL computes the nth power of the degree-d

polynomial f(x) (say f is univariate) by computing f(bi)" for nd + integers
b 0,..., bnd+l --nd, and then using interpolation to compute g f". For
several variables, EVAL is used recursively, since f(bi) would be a polynomial in
fewer variables than f(x).

More precisely, EVAL is as follows.
1. If v 0, i.e., f is an integer, return the integer fn.
2. Set c(xl,..., xv-1) to 0, h(xv) to l, b to -1.
3. Setbtob / 1.
4. Set f to f(xl, x_ 1, b) (evaluation).
5. Set g to fn (computed by EVAL).
6. If h 1, set c to g; otherwise, set c(xl,..., x) to

h(x)
(g c(x ..., x_ b)) + c(x ..., x)

h(b)
(interpolation).

7. Set h(x) to (x b)h(x).
8. If degree of h is less than or equal to n times the degree of x in f (= d),

then go to 3; otherwise return the value c.
We have stated this algorithm, first proposed by Horowitz [13, with some

slight improvements. A further improvement apparent from the analysis, is that
recursion down to v 0 is a poor choice; when v 1, faster algorithms can be
used.

4.4.2. Analysis of EVAL. We will consider only coster for EVAL.
If v 0, EVAL executes only step 1, using exponentation. For v 0 then,

costM (0) 0.
To compute costM (v), let us itemize multiplications at each step.
Step 4. This is executed nd + times, and all but the first execution requires,

using Horner’s rule, d multiplications of b by a polynomial of size (d + 1) 1. The
first time through, b 0, requiring no multiplications. The costu for step 4 is
therefore

(4.4.2a) nd2(d + 1)-1.

Step 5. This is executed nd + times for a

(4.4.2b) costM (nd + 1) costu (v 1).

Step 6. The first time through, h 1, so the cost 0. The ith time through,
for 2,-.., nd + 1, the multiplication costs can be itemized as follows (note
that at the ith step, h(x) x. (x 1) (xv + 2) and has 1 terms):

h(b):i- 1,

h* h(xo)/h(b) 1,

c* c(xl, ..., xo_l,b):(nd + 1)-1(i 2),

h*. (g c*):(nd / 1) 1(i 1),

POLYNOMIAL MULTIPLICATION 205

Thus for step 6, costM is

rid+

(4.4.2c) [(nd+ 1)-1(2i- 3)+ 2i- 2] =n2d2(nd+ 1)v-1 + n2d2 + nd.
i=2

Step 7. This step is executed nd + times, costing
rid+

(4.4.2d) 2+ 2(i- 1)= n2d2 + nd + 2.
i=2

Including all these cost, we find

costM (V) (td + 1) costM (v 1) + nd2(d + 1)-
(4.4.2e)

+ n2d2(nd + 1)-1 + 2n2d2 + 2nd + 2.

The formula above is exact. It is not asymptotic. It predicts precisely how
many multiplications our EVAL implementation needs given n, d and v, assuming
no zero coefficients are generated, a reasonable prospect, given the worst-case
input assumptions.

If we assume cOStM(0 0, we can show from (4.4.2e) that EVAL is
O((ndff+)), and is, asymptotically speaking, more efficient than the previous
algorithms, at least for v > 1.

The cutoff point at which EVAL becomes better than, say, RMUL, reveals
how important (or unimportant) this asymptotic result is. Let us compare exact
formulas for EVAL and RMUL as computed from (4.4.2e) and (4.1.2a), respec-
tively, for several values of v. Since (4.4.2e) can be represented as a computer
program in the same way as (4.1.2a), we can display the result exactly for v 2,
and compare with (4.1.2b). It is

(4.4.2f) 4d3n3 4- (d3 4- 8dZ)n2 + (d3 4- 2d2 4- 5d)n + 3.

Since most of the formulas themselves are rather large, we will, for the most
part, display the leading terms only. However, exact formulas were used to deter-
mine the cutoff points in Table 1. The cutoff points are the smallest n and d where
EVAL uses fewer multiplications than RMUL.

TABLE

RMUL

(1/2)dZn
(1/3)(d* + 2d3)n

(1/4)(d + 3d + 3d4)n4

EVAL

3d2n
4d3n

5d4n4

Cutoff

n=2, d=35;
n=4, d=18;
n=6, d= 15;n=200, d= 10
n=2, d=8; n=3, d=5;
n=4, d= 5; n= 5, d=4;
n=29, d= 3.

From Table 1, we see that for many quite sizable problems, EVAL is worse
than RMUL. The time for EVAL is frequently several times that for RMUL.

206 RICHARD J. FATEMAN

The timings given in tables in [13] don’t go above these cutoff points, and
yet EVAL is claimed to be superior to RMUL for many much smaller problems.
In fact, on the basis of exact counting of all arithmetic operations, and actual
timings of our programs, we believe the tables in [13] reflect only irrelevant factors
related to the implementation.

In 5 we give counts for EVAL modified to use RMUL instead of EVAL
when recursion requires powering univariate polynomials. This is a considerable
improvement as shown by Table 2, calculated from (4.4.2e) but using cOStM (1)
derived from (4.1.2a).

TABLE 2

EVAL + RMUL)

(1/2)den
(3/2)d3n

(5/2)d4n’

Cutoff points (EVAL better than RMUL)

n=2, d= 10"n=3, d=6"n=4, d= 5"
n= 5, d=4’5 <n< 15, d=3’n=> 15, d=2
n=2, d=5"n=3, d=3"n=4, d=3"
n_>_5, d=2

Since SUMS is better than RMUL for univariate polynomials, n > 4, we
can improve EVAL for n > 4 by using SUMS instead of RMUL. Analysis of this
situation reveals that EVAL is worsened for small cases, as expected, and improved
(but not very much) for large cases. There is really no need to compromise between
RMUL and SUMS:if n < 4, we could use RMUL, otherwise SUMS.

We can observe, now, that even though we can, for v 3, improve EVAL
to 2d’*n + ..., (the result of using SUMS), it is still not better than RMUL for
moderate size problems. Since RMUL is inferior to RSQ for most problems, this
puts EVAL typically no higher than third best. Its exact standing, of course can
be derived from the evaluation of the appropriate counting formulas.

4.5. Algorithm BINOM (binomial expansion).
4.5.1. Description of BINOM. BINOM uses an adaptation of binomial

expansion to compute the nth power of the polynomial f.
The f is either a monomial or a sum. If it is a monomial, powers are trivially

calculated. Iff is a sum, it may be split into two subparts, R + S. To compute fn,
compute powers of R:R2, ..., R" and powers of S:S2, ,Sn, and use the
binomial theorem:

i=0

While R2 and S2 may be calculated by BINOM, it greatly simplifies the
analysis if we simply use classical multiplication to compute R2= R.R,
R3 R. R2, etc. The actual difference is small, for powers exceeding 2.

Two methods for splitting f come to mind, the first being to try to separate
f into two equal-sized parts, and the other is to split off a monomial. Monomial
splitting was first proposed in [5]. In either case, the algorithm has four steps:

1. Compute R2, R".
2. Compute $2, S".

POLYNOMIAL MULTIPLICATION 207

3. Computehi=()RiSn-i’fori=l,...,n-1.
hi+ R"+ S".4. Compute1

4.5.2. Analysis of BINOM. We first analyze BINOM for equal splitting.
Assume, for convenience, that the degree d is odd. Then R and S are the same size.
Let M(i)= size(Ri) size(Sg) (id + 1) l(i(d- 1)/2 + 1).

The multiplication costs are itemized as follows"
Step 1. M(1) 71 M(i).
Step 2. Same as 1.
Step 3. ’5_ M(i)(M(n i) + 1).
Step4. O.
The total is therefore

n-1

(4.5.2a) M(i)(2M(1) + M(n i) + 1).
i=1

This formula is exact if d is odd, and BINOM is not used recursively. This
formula is O(n2 + d2V)

If we use "monomial" splitting, we separate f at the highest power of the
d-1main variable. That is, if f fdxd + + fo, then R fdXd, and S fd-Xv

+ + fo. Basically, R is now a polynomial in v- variables (times xd). In
this case, let

N(i) size(S) (id + 1) x(i(d 1) + 1) and L(i)= size(Ri) (id + 1) x.
The multiplication costs are itemized as follows"

n-1Step 1. L(1) ,= L(i).
Step 2. N(1) ZT--- N(i).

L(i)(N(n i) + 1).Step 3. ZS_
Step 4. O.
The total is therefore

n-1

(4.5.2b) L(i)(N(n -i) + L(1) + 1) + N(i)N(1).
i=1

This formula is exact, for any n, d and v, assuming that BINOM is not used
recursively for squaring.

This formula is O(nZVdZv-+ nV+dZv). For asymptotic considerations,
monomial splitting appears superior. In this case, appearances do not deceive,
and (4.5.2b) is usually smaller than (4.5.2a). While half-splitting is better for small
cases, by v 2, n 4, monomial splitting is better for all d.

Of course, RMUL is only O(n+ ldZv), and EVAL is O((nd)+), while BINOM
is O(nZVd2v- --1- nv+ dzV), so that for large enough problems, BINOM will be
inferior. Yet we can show by (4.5.2b) (and confirm by timings) that BINOM is
really rather good for most problems of interest.

If we proceed by evaluating (4.5.2b) for v 2, we find that costM is exactly

(1/12)((d3 d2)n4 + (4d4 + 4d2 6d)n3

(4.5.2c) + (- 6d4 + ld3 + 13d2 + 30d 6)n2

+ (2d4- 12d3- 4d2 + 42)n- 12d2- 24d- 36).

208 RICHARD J. FATEMAN

This can be compared directly with RMUL (4.1.2b) and EVAL (4.4.2f) for
v 2. To make the comparison more direct, let us use the improved EVAL
(at 3/2d3n3) and fix d to be 3. Then

RMUL costs 48n3 24n2 8n- 16,
EVAL costs 45n3 + 27n2 + 28n- 3,
BINOM costs (28.5 + 1.5n)na + n2- 13n- 18.
The problem must be fairly large for BINOM to be "bad", as can be seen

in 5, where cost tables are computed. Another facet of BINOM’s attractiveness,
in spite of its poor dense asymptotic behavior, is that for sparse problems, it has
good asymptotic behavior, as discussed in [6].

4.6. Algorithm FFT (fast Fourier transform).
4.6.1. Description of Algorithm FFT. Let p be a prime number. Let F be the

multiplicative group consisting of the nonzero elements of GF(p), the integers
modulo p. Let h be a divisor of p 1, possibly h p 1, and let u be an element
of order h in F. Then one may transform a sequence ,(aiJi=o]h- of elements of GF(p)
into another sequence h-1(ai)i:o by the finite Fourier transform

h-1

(4.6.1a) i-- 2 aJblij"
j=0

The inverse transform is defined by
h-1

(4.6.1b) ai h’. liu-ij,
j=0

where h’ is the inverse of h in GF(p). Equations (4.6.1a) and (4.6.1b) can be cal-
culated by the "fast Fourier transform" [18] where complex multiplication and
addition are replaced by the corresponding operations in F. A detailed de-
scription of the FFT in a finite field and proofs of its important properties may
be found in [4] or [18].

The property of the FFT which we use is the following.
Let

d

f aiXi, ai F.
i=0

Then
nd

fn 2 cixi Ci F
i=o

where (ci) may be calculated by FFT’s. More precisely, we extend (ai) to be of
length h > rid. Then compute (i) (dtin), that is, raise each element of (di) to the
nth power in F. (In the multivariate case, the cg would be polynomials in v
variables, for which this algorithm could be used recursively to compute

The inverse transform of () is (c). This answer is over the field F.
Ordinarily it is convenient to let the algorithm choose the field F, to take

advantage of precomputed values of u, or to require that a member of some
particular list of primes be used for the modulus of the field F. Furthermore, h is
generally rounded up to a power of 2 or 3. (In 5, we are timing a power-of-2 FFT).

POLYNOMIAL MULTIPLICATION 209

Some details may be found in [18], but Bonneau [4] gives precise descriptions
of an implementation, and specifies how one can overcome the difficulties cited
by Pollard. The extension for results over the integers is also described by Bonneau.

4.6.2. Analysis of FFT. Let us assume that a suitable field F, and a u e F
have been computed. The number of operations (multiplications and additions)
required to calculate an FFT or inverse FFT of a sequence of integers in GF(p)
of K elements is O(K log K). Between these two transforms one must compute
nth powers of the K elements. The powering can be done with K exponentiations.

For a univariate polynomial where K nd + < 2j, our programs require
exactly (see [4] for details)

(4.6.2a) j2j- 2

multiplications for the FFT and

(4.6.2b) j2j-1 +2-2

multiplications for the inverse FFT. Thus cOStM is

(4.6.2C) O(nd log (nd)).

This is the best asymptotic bound known for this problem.
If the elements of the sequences are polynomials in subsidiary variables,

then the transforms are done on the coefficients (etc.) down to elements of the
base field. Then costM (v)can be itemized as follows:

Step 1. If v 0, use one exponentiation. Otherwise compute (cii), the trans-
form of (ai) of length > nd + 1.

Step 2. Compute (Oz), the componentwise nth power of (fi) using this algorithm
(or one of the others) recursively.

Step 3. Compute the inverse transform of (:).
For v 0, we can say that cost of computing the nth power of a finite field

element is less than 2 log2 (n) multiplications one exponentiation. To keep our
analysis consistent (and inconsequentially different), we ignore this cost, and
count only the multiplications used. If 2 > nd + 1,

(4.6.2d)

costM (0) 0,

costM (V) (d 4- 1) l(j2J- 2) + 2 costM (v 1)

+ (nd + 1)-l(j2J-1 + 2 2) (v > 0).

This formula is not exact, unfortunately, but an upper bound, since not all
transform arithmetic will not be as costly as indicated; many of the coefficients
in the input sequence are zero, since the sequence has been extended to size 2
where 2 > nd + 1, so only d + elements are nonzero. A similar consideration
holds for the inverse transform.

Nevertheless, this formula is still

(4.6.2e) O(v(nd) log (nd)).

This is the best known asymptotic bound for the dense multivariate case.
Again, we refer the reader to [4] for implementation details.

210 RICHARD J. FATEMAN

The point at which the FFT algorithm becomes practical can be seen from
a few specific cases, as given in {} 5.

For v 1, d 7, the FFT method is best for n > 3. For v 1, d >__ 15, the
FFT is best for any n.

For v-2, d=3, the FFT is best for n_>_7. For v--2, d=6, the FFTis
best for n > 4. At n 5 it is almost 4 times faster than the next best.

Forv-3, d=4, it is best for n > 2.
These figures are for "pure" FFT methods. Since the algorithm, as im-

plemented, provides convenient points at which other programs can be invoked,
a substitution of RSQ (for example) for the FFT method is quite feasible. In fact,
by using the FFT in combination with RSQ and perhaps BINOM, one algorithm
can be constructed to use the fewest operations over nearly the whole range of
problems which are correctly characterized by the completely dense assumptions
of this paper.

5. Empirical tests. The following tables give the number of multiplications
required to compute the indicated powers using programs in the MACSYMA
system for algebraic manipulation [1], 17]. All polynomial multiplications except
those in RSQ are done using classical multiplication. RSQ uses split multi-
plication. EVAL uses RMUL for univariate polynomials, otherwise it would be
much slower.

TABLE 3
Univariate polynomials (V 1)

D=2

RMUL 9 24 45 72 105 144 189
RSQ 9 24 32 61 79 112 115
SUMS 18 28 38 48 58 68 78
BINOM 7 18 32 49 69 92 118
FFT 28 28 76 76 76 76 188

D=7 Power(N)

RMUL 64 184 360 592 880 1224 1624
RSQ 64 184 289 521 724 1047 1130
SUMS 168 273 378 483 588 693 798
BINOM 57 163 317 519 769 1067 1413
FFT 76 188 444 444 444 444 444

D 15 Power(N)

RMUL 256 752 1488 2464 3680 5136 6832
RSQ 256 752 1217 2193 3108 4519 4938
SUMS 720 1185 1650 2115 2580 3045 3510
BINOM 241 707 1397 2311 3449 4811 6397
FFT 188 444 444 1020 1020 1020 1020

POLYNOMIAL MULTIPLICATION 211

TABLE 4
Bivariate polynomials (V 2)

D=2 Power(N)

RMUL
RSQ
EVAL
BINOM
FFT

81 306 747 1476 2565 4086 6111
63 228 488 1190 1703 2732 3971
191 542 1175 2174 3623 5606 8207
66 233 555 1094 1920 3111 4753

308 342 1556 1636 1724 1820 7484

D=3 Power(N)

RMUL
RSQ
EVAL
BINOM
FFT

256 1040 2640 5344 9440 15216 22960
144 676 1369 3761 6010 10091 13368
522 1540 3422 6438 10858 16952 24990
212 843 2154 4442 8040 13317 20678
261 1397 1505 6903 7137 7497 7749

D=6 Power(N)

RMUL 2401 10682 28371 58996
RSQ 1225 5866 13224 36149
EVAL 3327 10258 23435 44910
BINOM 2114 9477 25635 54494
FFT 1790 7830 8430 9102

TABLE 5
Trivariate polynomials (V 3)

D=I Power(N)

RMUL
RSQ
EVAL
BINOM
FFT

64
36
184
52
172

280
186
614
189

2068

792
477
1558
470

2208

1792
1477
3322
974

2616

3520
2292
6284
1804
2806

6264
4007
10894
3091

23836

10360
7702
17674
4998
24460

D=3 Power(N)

RMUL
RSQ
EVAL
BINOM
FFT

4096
1296
5792
3344
2014

26048
11404
24114
21441
21630

90048
31921
69712
78474
25410

212 RICHARD J. FATEMAN

For univariate polynomials, we do not give counts for EVAL, since EVAL
RMUL. For multivariate polynomials we do not give counts for SUMS, since

its performance is uniformly poor in these cases.
Similar charts using computation time rather than multiplication counts are

essentially identical. In almost all cases, the fastest algorithm used the fewest
multiplications. (Occasionally RSQ is relatively slower than the multiplication
count indicates because of the larger number of additions).

6. Summary. If one is presented with a problem in which the worst-case
assumptions of complete denseness do hold, the logical choice for a univariate
powering algorithm is the FFT, unless all problems are of trivial size. For several
variables of low degree (d 2, 3, 4), to a low power (n 2 or 3), BINOM or
RSQ has the edge. For more variables of larger degree and to higher powers,
FFT will be superior.

If one is interested in precisely minimizing the number of multiplications
(and thus, in our experiments, minimizing the run time), a decision between
EVAL, RMUL and BINOM can be made on the basis of formulas provided. If
n is a power of 2, an exact formula for RSQ is provided.

Powers of polynomials whose coefficients are multi-precision integers can
be computed by any of these algorithms by using the Chinese remainder algorithm
[7], [12], 13]. Alternatively, all but the FFT can be used directly on multi-
precision integers.

In terms of polynomial multiplication, we have found the classical method
may be convenient to use, but inappropriately slow for dense polynomials. It is
especially inappropriate for use in asymptotic analysis. Split multiplication or
FFT multiplication must be considered as practical algorithms, and certainly
should be used in asymptotic analysis under dense assumptions. Implementa-
tions in MACSYMA [3] have demonstrated that these methods, in contrast to
their analogues in integer arithmetic, are practical even for reasonably small
problems.

We believe that the FFT has been unnecessarily neglected by designers of
algebraic manipulation systems, and trust that forthcoming work by researchers
in the field of algebraic manipulation will find numerous practical applications.

One question, implicit in this work, which we have not attempted to answer
concerns the relevance of analysis which assumes "worst cases". It is clear that
worst-case problems can be constructed, but it is not at all clear that the best
algorithm chosen for these assumptions is the best algorithm for an "average"
case. Since there appears to be no satisfactory characterization for average cases
(although one is attempted in [14]), one can only point out the problem and hope
this work will be relevant in providing intuition. An alternative model, using a
concept of "completely sparse" as defined in [9], gives another handle on the
problem. Formulas analogous to those of this paper, for sparse polynomials, for
a number of algorithms, are given in 6]. The conclusion there is that a method
similar to BINOM is a good choice.

In any case, the problems of characterizing polynomials are serious, and
have been largely ignored in algorithmic analysis of polynomial algorithms. We
hope to see more progress in this area.

POLYNOMIAL MULTIPLICATION 213

Acknowledgments. The MACSYMA system 13 provided the motivation for
this study, and was invaluable in supplying data and deriving formulas.

The author wishes to thank his colleagues at Project MAC and elsewhere
for their comments on earlier drafts of this paper, and especially to Richard
Bonneau, for bringing the FFT to a point where it could be used in "non-
asymptotic" situations.

REFERENCES

[1] R. BOGEY, The MACSYMA Manual, Project MAC, Mass. Inst. of Tech., Cambridge, Mass.,
1973.

[2] R. J. BONNEAt, Polynomial exponentiation: The fast Fourier transform revisited, TM34, Project
MAC, Mass. Inst. of Tech., Cambridge, Mass., 1973.

[3] --, A class of finite computation structures supporting the fast Fourier transform, TM31,
Project MAC, Mass. Inst. of Tech., Cambridge, Mass.; presented at SIAM National Conf.,
Hampton Beach, Va., 1973.

[4] , Polynomial operations using the fast Fourier transform, Ph.D. thesis, Dept. of Mathe-
matics, Mass. Inst. of Tech., Cambridge, Mass., 1974.

[5] R. J. FnTEMnY, On the computation of powers of polynomials, Dept. of Mathematics, Mass.
Inst. of Tech., Cambridge, Mass., 1972.

[6] On the computation ofpowers of sparse polynomials, Studies in Appl. Math., 53 (1974),
pp. 145-155.

[7] --, On the implementation of modular algorithms, Dept. of Mathematics, Mass. Inst. of
Tech., Cambridge, Mass., presented at SIAM National Conf., Hampton Beach, Va., 1973.

[8] H. E. FEa’xIs, Algorithm 158, Comm ACM, 6 (1963), p. 104.
[9] W. M. GENTLEMnY, Optimal multiplication chains for computing a power ofa symbolic polynomial,

Math. Comp., 26 (1972), pp. 935-939.
[10] , On the relevance of various cost models of complexity, Complexity of Sequential and

Parallel Algorithms, J. F. Traub, ed., Academic Press, New York, 1973.
[11] L. E. HEINDEL, Computation ofpowers of multivariate polynomials over the integers, J. Comput.

System Sci., 6 (1972), pp. 1-8.
[12] E. HOROWlTZ, Modular arithmetic and finite field theory." A tutorial, Proc. 2nd Sympos. of

Symbolic and Algebraic Manipulation, S. R. Petrick, ed., Association for Computing
Machinery, Los Angeles, 1971, pp. 188-195.

[13] , The efficient calculation ofpowers ofpolynomials, 13th Ann. Sympos. on Switching and
Automata Theory, IEEE Computer Society, October, 1972.

[14] E. HOROWlTZ AND S. SAHNI, On the Computation ofPowers ofa Class ofPolynomials, TR72-143,
Dept. of Computer Science, Cornell Univ., Ithaca, N.Y., 1973; presented at SIAM National
Conf., Hampton Beach, Va., 1973.

[15] D. E. KNUTH, The Art of Computer Programming. Vol. 2: Semi-numerical Algorithms, 2nd ed.,
Addison-Wesley, Reading, Mass., 1969.

[16] J. D. LIPSON, Chinese remainder and interpolation algorithms, Proc. 2nd Sympos. of Symbolic
and Algebraic Manipulation, S. R. Petrick, ed., Association for Computing Machinery,
Los Angeles, 1971, pp. 372-391.

[17] W. A. MARTIN AND R. FATEMAN, The MACSYMA System, Proc. of the 2nd Sympos. on Symbolic
and Algebraic Manipulation, S. R. Petrick, ed., Association for Computing Machinery,
Los Angeles, 1971, pp. 59-75.

[18] J. M. POLLARD, The fast Fourier transform in a finite field, Math. Comp. 25 (1971), pp. 365-374.
[19] D. Y. YUN, The Hensel lemma in algebraic manipulation, Ph.D. thesis, Dept. of Mathematics,

Mass. Inst. of Tech., Cambridge, Mass., 1973.

SIAM J. COMPUT.
Vol. 3, No. 3, September 1974

ON HAMILTONIAN WALKS IN GRAPHS*

S. E. GOODMAN AND S. T. HEDETNIEMI?

Abstract. A Hamiltonian walk in a graph G is a closed walk of minimum length which contains
every point of G. An Eulerian walk in a graph G is a closed walk of minimum length which contains
every line of G. In this paper we establish several relationships between Hamiltonian and Eulerian
walks. We also derive a number of bounds on the length of a Hamiltonian walk.

Key words. Hamiltonian walks, E’ulerian walks, graph theory spanning traversals

1. Introduction. Given any connected graph G, it is possible to start at an
arbitrary point u of G, walk in some sequence along the lines of G and return to
the starting point u having passed through every point in G at least once. In
general, such a walk might pass through some points, and traverse some lines,
more than once. We call such a walk a closed spanning walk of G. A Hamiltonian
walk in G is a closed spanning walk of minimum length. The length of a Hamil-
tonian walk in G will be denoted by h(G). If G has p points and h(G) p, then G
is a Hamiltonian graph.

Similarly, given any connected graph G, it is possible to start at an arbitrary
point u, traverse all the lines of G and return to point u. Again, it is possible that
some lines might have to be traversed more than once. We call a walk of this
kind a closed covering walk. An Eulerian walk in G is a closed covering walk of
minimum length. The length of an Eulerian walk in G will be denoted by e(G).
If G has q lines and e(G) q, then G is an Eulerian graph.

The theory of Eulerian walks is fairly complete. Let G be a connected graph
with q lines and 2n points of odd degree. In 1736, Euler showed that e(G) q if
and only if n 0. For n > 0, Eulerian walks can be studied using the theory
described in [1], [2] and [3]. Essentially, this theory finds a set of paths in G, of
minimum total length, which connects all the odd points of G in pairs. The lines
in this set of paths are then added to G to produce a multigraph G. Since every
point of t has even degree, it can be traversed as described in Euler’s classical
result. It is possible to show that the walk so obtained is an Eulerian walk in G.
Various theorems and algorithms are available which aid in finding Eulerian
walks.

It is well known that there is no satisfactory characterization of Hamiltonian
graphs; and we have never seen any work done on the Hamiltonian walk problem.
In this paper we will determine some simple bounds on h(G) and present several
relationships between Eulerian and Hamiltonian walks.

In the interests of self-containment, we next present a few definitions; any
terms not defined here can be found in Harary [4.

A cutpoint V of a connected graph G is a point whose removal results in a
disconnected graph G V; similarly, a bridge uv of a connected graph G is a line

Received by the editors May 11, 1973, and in revised form November 5, 1973.

" Department of Applied Mathematics and Computer Science, University of Virginia, Charlottes-
ville, Virginia 22901.

214

ON HAMILTONIAN WALKS IN GRAPHS 215

whose removal results in a disconnected graph G uv. A block of a graph is a
maximal, connected subgraph which has no cutpoints.

Finally, the distance d(u, v) between two points u and v is the length of a
shortest path between u and v; the diameter d of a graph G equals the maximum
d(u, v) for all points u, v in G.

2. Simple bounds on h(G). Since no graph can be "better" than Hamiltonian
and since any covering walk is also spanning, we can immediately establish the
following bounds for any graph G with p points and q lines"

p <= h(G)<= e(G) <_ 2q.

These bounds are best possible in the sense that there exist large classes of graphs
where h(G) actually attains either the lower or upper bound. For most graphs,
however, the above bounds are very coarse.

Our first result shows that in order to find a Hamiltonian walk in a graph (7,
or to find h(G) or bounds for h(G), it is sufficient to solve these problems for
certain subgraphs of G; the proof is obvious and is omitted.

THEOREM (Cutpoint Theorem). Let G be a connected graph having blocks
B,..., Bk. Then the union of the lines in Hamiltonian walks for each of the B
forms a Hamiltonian walk for G, and conversely, the lines in any Hamiltonian walk
of G form Hamiltonian walks for each of the blocks Bi.

COROLLARY a. Every bridge of a graph G appears twice in every Hamiltonian
walk of G.

COROLLARY lb. If G is a tree with p points, h(G) e(G) 2q 2(p 1).
COROLLARY lC. If B1, B2, B are the blocks of a graph G and a h(Bi)

<__ b for <__ <= k, then al + + ak <= h(G) <= bl + + bk.
If a graph G is not a block, Corollary lc permits a much better estimate of

h(G)
By limiting one’s attention to special classes of graphs, it is often possible

to get exact values for h(G). One such result is the following, which completely
determines h(G) for complete n-partite graphs.

THEOREM 2. Let G K,,,,,,2,...,," be a complete n-partite graph on m 4- m2

+ + m, p points, where m <-_ m2 <= <- ran. Then
(a) G is Hamiltonian, i.e., h(G) p ifand only ifml + m2 + +
(b) if m + m2 4- 4- m < mn, then h(G) 2m,.
Proof. Let the points of K,,,,2,...,,,, be partitioned into sets M1, M2, Mn,

where IMil mi. According to a Theorem of Dirac 5, a graph G with p points
is Hamiltonian if every point of G has degree >=p/2. If we assume that ml + m2
+ + m,_ _-> m,, then it follows that m 4- m2 4- 4- m >- p/2. There-
fore, every point in the set M, has degree equal to m + m2 4- 4- mn-1 >= p/2.

Furthermore, since m _<_ m,, for _<_ _<_ n 1, it follows that every point in

M has degree larger than or equal to the degree of any point in M,, which in
turn has degree >__ p/2. Thus if ml + m2 + + m,_ >__ m,, then G is Hamil-
tonian, by virtue of Dirac’s theorem.

If, on the other hand, m + m2 +’" + m,_a < m,, then G cannot be
Hamiltonian, since any Hamiltonian cycle would have to enter the set
times from the set M1 (3 M2 U 1,3 M,_ 1. This cycle would also have to enter

the set M1 (3 M2 (.J M,_I exactly m, times from the set M,. But since

216 S. E. GOODMAN AND S. T. HEDETNIEMI

m + m2 + -k- m,_l < m,, it follows that this cycle would have to enter at
least one point of M1 U M2 U U Mn-1 at least twice, a contradiction.

It is a relatively easy matter to construct a Hamiltonian cycle in K,,1,m2,...,,,,"
when ml + m2 + + m,_l => m,. One can show, furthermore, that

h(Km,,mz,...,m,)-- 2m.
by observing that any Hamiltonian walk must enter and leave M, at least m,
times each. Thus h(G) >= 2m,. It is an easy matter to construct a Hamiltonian
walk of length exactly 2m,.

A very desirable form of bound is one that would "float" up or down as a
function of various easily computable parameters of a graph. One such bound is
given in the next theorem.

THEOREM 3. If G is n-connected and has diameter d, then

h(G) <= 2p [n/2](2d- 2)- 2,

where n/2] denotes the integer part of n/2.
The proof of Theorem 3 follows from Corollary lb and the fact that G con-

tains at least two points which are connected by n point disjoint paths, each of
which is at least of length d.

As we have seen in Theorem 1, there is no loss of generality if we only con-
sider graphs with n >__ 2. For any block G with diameter d, we have h(G) <__ 2(p d).

Finding lower bounds for h(G) is much more difficult than finding upper
bounds. If one is to conclude that h(G) is strictly greater than p, then as part of
this effort one has to show that G is not Hamiltonian. In general, this is very
difficult to do. We present one general lower bound.

A clique of a graph is a maximal complete subgraph. A point is unicliqual if
it lies on only one clique. We will need the following two lemmas.

LEMMA 4a. A point v in a graph G is unicliqual if and only if the set of points
adjc.cent t v induces a complete subgraph of G.

LEMMA 4b. If v is unicliqual in a graph G and u :/: v is a point in G, then v is

unicliqual in G u.
THEOREM 4. Let U denote the set of unicliqual points in a graph G. Then

h(G U) /lOl =< h(G)
Proof. Let W VlV2 v, be a Hamiltonian walk in G and let

be the set of unicliqual points in G. Consider the point u e U. Since W is a
Hamiltonian walk, u must appear somewhere in W. Consider the two points
immediately preceding and following any occurrence of u in W, say viuavi+2.
Since by Lemma 4a we know that the set of points adjacent to u in G forms a
complete subgraph, we know that either viva+ 2 is a line of G or v v+ 2.

Hence by deleting every occurrence of u for which vi - v+ 2, or by deleting
ul and vi+2 if vi v+2, we will obtain a closed walk (call it W1) in the graph
G ul G1 which contains every point of G1.

By Lemma 4b we know that points u2, "", Uk are unicliqual in G1. There-
fore by deleting in the same way every occurrence of u2 in W we will obtain a
closed walk which contains every point of G1 u2 G2.

ON HAMILTONIAN WALKS IN GRAPHS 217

By iterating this process we will obtain a series of closed walks W1, W2,
.., W which contain every point of the graphs G, G2,..., Gk, respectively.
Thus we will obtain a closed walk W, of length <=h(G) -IUI h(G) k, which
contains every point of the graph G G {Ul, u2,.’., u} G U. There-
fore h(G)= h(G U)<= h(G)- UI.

COROLLARY 4a. No unicliqual point ever appears more than once in a Hamil-
onian walk.

COROLLARY 4b. Let U denote the set of unicliqual points in a graph G. Then
h(a u) /lgl =< h(a) <= h(a U) + 21UI.

3. Relationships between Eulerian and Hamiltonian walks. While in general
it is very difficult to find Hamiltonian walks in graphs, it is relatively easy to find
Eulerian walks in graphs I2], I3]. In this section, we use the existing theory of
Eulerian walks to establish several properties of Hamiltonian walks.

In [3 it was shown that no line of a graph G ever appears more than twice
in any Eulerian walk in G; the same result is also true for Hamiltonian walks.

LEMMA 5a. No line of a graph G ever appears more than twice in any Hamil-
tonian walk in G.

Proof. Let W be a Hamiltonian walk in a graph G and let uv be a line which
appears at least three times in G; then W must have one of the following three
forms.

Case 1. 14/= AuvBuvCuvD, where A, B, C and D are subwalks (possibly
empty) of W. In this case the walk AuvCuvD, where denotes the reversal of
the subwalk B, is a walk containing every point of G which is shorter than W and
hence contradicts the minimality of W;

Case 2. W AuvBuvCvuD. In this case the walk AuuCvuD contradicts the
minimality of W;

Case 3. W AuvBvuCuvD. In this case the walk AuCuvBvD contradicts the
minimality of W.

Let W be a Hamiltonian walk in a graph G (V,E). Let Gw denote the
multigraph induced by W; that is, Gw (V, Ew), where Ew consists of the lines
in W. If a line occurs twice in Ew, then it occurs twice in the multigraph Gw. By
Lemma 5a we know that no line occurs more than twice in Gw. Since W is a closed
walk, it follows that Gw is an Eulerian multigraph.

From the above observations about the multigraph Gw, it is apparent that
the problem of finding a Hamiltonian walk is equivalent to finding a connected,
spanning, Eulerian multisubgraph of G having a minimum number of lines. By
a multisubgraph of G we mean a multigraph, every line of which is a line of G.

If V is an Eulerian walk in a graph G, then the corresponding multigraph
Gv will also be a connected, spanning, Eulerian multisubgraph of G. Consequently,
if we can perform any transformation on Gv which will result in a smaller con-
nected, spanning, Eulerian multisubgraph of G, say G,, then the number of lines
in G, will be an upper bound for h(G). In particular, if we can delete every line
in a cycle of Gv and still have a connected multigraph, then the number of lines
in the resulting graph will provide an upper tound for h(G). This suggests the
following two results.

LEMMA 5b. No cycle of a graph G can have more than half of its lines appear
twice in any Hamiltonian walk in G.

218 S. E. GOODMAN AND S. T. HEDETNIEMI

Proof. Let Gw be the multigraph produced by a Hamiltonian walk W in G.
By a previous observation, we note that Gw is a connected, spanning, Eulerian
multisubgraph of G having a minimum number of lines. Let C be a cycle of G,
more than half the lines of which appear twice in Gw. If we delete from Gw one
of the two occurrences of each of these lines on C and add in their place a line to

Gw for every remaining line on C, we can observe that the resulting multigraph
will still be connected, spanning and Eulerian, and have fewer lines than Gw: a
contradiction.

A cycle C in a connected graph G is a cutting cycle if the graph obtained from
G by deleting every line of C is disconnected.

THWOREM 5. In a connected graph G, if h(G) e(G), then every cycle of G is
a cutting cycle.

Proof. Let h(G) e(G), and assume that G contains a cycle C of length k,
the removal of which does not disconnect G. Let Gv be a multigraph induced by
an Eulerian walk V in G, i.e., Gv contains e(G) lines. Since the cycle C is not a
cutting cycle, it follows that the multigraph Gv C obtained from Gv by deleting
every line of C is a connected, spanning, Eulerian multisubgraph of G which has
fewer lines than Gv. Hence h(G) <_ e(G) k < e(G), a contradiction. Thus every
cycle of G must be a cutting cycle.

An improvement in Theorem 5 can be obtained by noting the following. Let
G be a connected, Eulerian multigraph. Let C be a cycle in G and let the lines of
C be partitioned into two subsets C1 and C2 such that G- C1 is a connected
graph. If we remove from G all the lines in C1 and add one multiline for every line
in C2, the resulting multigraph, denoted by G C1 + C2, will still be connected
and Eulerian. Furthermore, iflCl >]C2[, then G C1 + C2 will have fewer lines
than G. This essentially proves our next result.

THWORWM 6. lfa graph G contains a cycle, more than half the lines of which can
be removed without disconnecting G, then h(G) < e(G).

The theta-graph /2,3 shows that the converse to Theorem 6 is false. Our
next result shows that the converse to Theorem 6 does hold for Eulerian graphs.

THWOP,rM 7. If a graph G is Eulerian and h(G) < e(G), then G must contain a
cycle of which more than half the lines can be removed without disconnecting G.

Proof. Assume that h(G) < e(G). Let W be a Hamiltonian walk in G and let
Gw be the Eulerian multigraph induced by W. Color in red those lines uv of G
which do not appear in W. Color in blue those lines uv of G which appear twice
in W. Let G’ be the subgraph of G which consists of these colored lines. Since
both G and Gw are Eulerian, it follows that every connected component of G’ is
Eulerian. Furthermore, since h(G) < e(G), it follows that at least one component,
say H, of G’ has more red than blue lines;

Finally, since every Eulerian graph can be expressed as a line-disjoint union
of cycles, it follows that in the Eulerian graph H, which is a subgraph of G’ and
of G, there must exist at least one cycle containing more red than blue lines.

If we were to remove these red lines from the graph G, the resulting graph
would have to be connected since there would still remain in G all the blue lines
in W, which serve to connect G. Thus G contains a cycle of which more than half
the lines can be removed without disconnecting G.

CooIIA, 7a. If a graph is Eulerian, then h(G) < e(G) if and only if G con-
tains a cycle ofwhich more than half the lines can be removed without disconnecting G.

ON HAMILTONIAN WALKS IN GRAPHS 219

Our next result shows that it is always possible to start with an Eulerian
walk V in G and by a sequence of transformations of the cycles of the induced
multigraph Gv produce a Hamiltonian walk in G.

By cycle splitting in a multigraph, we mean the process of partitioning the
lines of a cycle of G into two sets, say C1 and C2, where ICll > IC21, deleting from
G every line in C1 and adding one additional multiline for each line in C2. Note
that it is possible for C2] 0.

THEOREM 8. Let V and W be any Eulerian and Hamiltonian, respectively, walks
in a graph G, and let Gv and Gw be the corresponding induced multigraphs. Then
Gv can be transformed into Gw by a sequence of cycle splittings.

Proof. Assume that the lines of the multigraphs Gv and Gw have been colored
red and blue, respectively. Consider the multigraph Gv + Gw obtained by super-
imposing these two multigraphs. Between any two adjacent points of the multi-
graph Gv + Gw there will appear a set of multilines of one of the forms appearing
in Fig. 1, where solid lines denote red lines and dashed lines denote blue lines.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

FIG.

We will now describe a sequence of transformations of the multigraph
Gv + Gw. Each such transformation will have associated with it a corresponding
transformation of the graph Gv. At the end of this sequence of transformations
we will have deleted every line of Gv / Gw, leaving it empty; the corresponding
sequence of transformations on Gv will produce the multigraph Gw.

Every set of multilines having forms (ii) or (v) in Fig. will be deleted from
Gv + Gw. The corresponding action in Gv is to leave the corresponding real
lines alone.

Multilines of the form (iii) are also to be deleted from Gv + Gw. In Gv these
same lines will be deleted: this will correspond to a cycle splitting in Gv where
ICll 2, IC21 o.

220 S. E. GOODMAN AND S. T. HEDETNIEMI

Every line of the form (i) will ultimately be deleted from Gv + Gw. The cor-
responding action in Gv will be to delete this line as a part of a cycle splitting.
Multilines of the form (iv) in Gv + Gw will ultimately be transformed into form
(ii), i.e., one of the two red lines will be deleted; the corresponding action in Gv
will also be to delete such a multiline as part of a cycle splitting.

Multilines of the form (vi) in Gv + Gw will ultimately have an additional
red line added to them as part of a cycle splitting. The corresponding action in
Gv will be to add a multiline as part of a cycle splitting.

Intuitively, the purpose of these transformations is not necessarily to remove
every line from Gv + Gw, rather to transform Gv + Gw into a multigraph which
has only multilines of the forms (ii) or (v). Having done this, the multigraph Gv
will have been transformed into the multigraph Gw.

We now proceed to transform Gv + Gw.
Step 1. Remove all multilines of forms (ii), (iii) or (v), leaving only multilines

of forms (i), (iv) or (vi). Denote the multigraph which results from Step by G’.
Note that every component of G’ is an Eulerian multigraph.

Step 2. Let G" be any component of G’. Since G" is Eulerian, there must exist
a cycle of multilines in G".

If every multi|ine on C is of the form (i) or (iv), then perform a cycle splitting
of red lines on C, where C1 C, IC21 0. In this process, multilines of the form
(i) will be deleted, while multilines of the form (iv) will be transformed into form
(ii). Repeat Step 1.

If C has multilines of the form (vi), then perform a cycle splitting of red lines.
That is, remove multilines of the form (i), delete one of the two red lines in multi-
lines of the form (iv) and add one red line to all multilines of the form (vi). Repeat
Step 1.

The process of repeating Steps and 2 will terminate when and only when
all lines of Gv + Gw have been removed. The corresponding actions in Gv will
produce the multigraph Gw.

Unfortunately, the proof of Theorem 8 is existential rather than constructive.
It i’esembles a theorem due to Tutte (cf. [4, p. 463) which proves that any 3-
connected graph can be generated from a wheel by a finite sequence of two trans-

formations. Tutte’s theorem is also nonconstructive.
Theorem 8 suggests the following procedure for obtaining relatively good

upper bounds for h(G), for an arbitrary graph G. By a half cycle of a graph G we
mean a cycle of which more than half the lines, possibly all, can be removed
without disconnecting G.

Step 1. Find an Eulerian walk V in G and construct the induced multigraph
Gv.

Step 2. Locate any half cycle C in Gv.
Step 3. Perform a cycle splitting on C in which we remove from Gv as many

lines of C as possible, without disconnecting Gv, and we add multilines on the
remaining lines of C. Repeat Step 2.

This procedure stops when a graph is produced which has no half cycles.
After each cycle splitting we have a new connected multigraph with fewer lines
than the preceding multigraph. Any Eulerian walk on this multigraph spans the
original graph, and so gives an upper bound to h(G). The ith successive iteration
of the algorithm produces a new multigraph Gi with h(G) <= e(Gi) < e(G_ 1).

ON HAMILTONIAN WALKS IN GRAPHS 221

Theorem 8 proves that there is at least one sequence of Gi such that the
sequence e(Gi) converges to h(G). However, not all sequences of half cycles will
give e(Gi) which converge to h(G). The process of trying out all possible sequences
and choosing the minimum is undoubtedly exponential. In practice, however, it
should not take too much effort to make the algorithm yield a reasonably good
upper bound.

Acknowledgment. The authors would like to thank Shen Lin for his helpful
comments which led us to the realization of Corollaries 4a and 4b and to a
strengthening of Theorem 8.

REFERENCES

Ill MEI-KO KWAN, Graphic programming using odd or even points, Chinese Math. Acta, (1962),
pp. 273-277.

[2] J. EDMONDS AND E. L. JOHNSON, Matching, Euler tours and the Chinese postman, Math. Program-
ming, 5 (1973), pp. 88-124.

[3] S. GOODMAN AND S. HEDETNIEMI, Eulerian walks in graphs, this Journal, 2 (1973), pp. 16-27.
[-4] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[5] G. A. DIRAC, Some theorems on abstract graphs, Proc. London Math. Soc. Set. 3, 2 (1951),

pp. 69-8 I.

SIAM J. COMPUT.
Vol. 3, No. 3, September 1974

A NOTE ON THE HECHT-ULLMAN CHARACTERIZATION
OF NONREDUCIBLE FLOW GRAPHS*

J. M. ADAMS, J. M. PHELAN AND R. H. STARK"

Abstract. An anomaly in the proof of a theorem characterizing nonreducible flow graphs is
pointed out. A proof is given which corrects for the anomaly and is fundamentally simpler than the
original proof.

Key words, flow graph, reducibility

Hecht and Ullman [1] have recently given an interesting structural char-
acterization of nonreducible flow graphs as follows.

THEOREM. Ifa flow graph is nonreducible, then it has a subgraph of theform (*)
shown in Fig. 1.

The wavy lines in Fig. denote node-disjoint paths.

FIG. 1. The graph (*)

We submit a proof of the characterization theorem which is fundamentally
simpler than that in [1 and corrects for an anomaly in the proof.

In the proof in [1], one assumes the existence of a depth first spanning tree
(DFST) with a loop on its spine (right-most branch). Such a loop is created by an
edge in the graph but not the DFST from a descendant to an ancestor. However,
there exist nonreducible graphs which have DFST’s with no loops on their spines
as shown in Fig. 2.

FIG. 2

Received by the editors July 5, 1973.

" Department of Computer Science, New Mexico State University, Las Cruces, New Mexico
88003.

The anomaly was observed independently by John Beatty of the University of California at

Berkeley.

222

NONREDUCIBLE FLOW GRAPHS 223

Proof of characterization theorem. We induct on n the number of nodes in
G (N, E, i), the flow graph. As observed in [11, the case n 3 follows by con-
sidering all possible three-node flow graphs.

Inductive hypothesis. Any nonreducible flow graph with from three to n nodes
has a subgraph of the form (*).

Let G (N, E, i) be a nonreducible flow graph with n + nodes.
As in], we assume without loss ofgenerality that T and T2 are not applicable

toG.
Let T (N, E’) be a DFST for G. The node is the root of T, and we let r

denote the right-most successor of i. Since T and T2 do not apply to G, there exists
an edge (k, r) in E E’ with k 4= r, and by 1, Lemma 2] there is a path, Q, in T from
r to k. Consider the subgraph Ho of all nodes along the path Q from r to k and all
edges in G between these nodes.

Let H be the subgraph consisting of(i) the nodes in Ho plus the nodes having a
path in G to k which does not pass through r, and (ii) all the edges between these
nodes.

If is in H, then there is a path P from to k that avoids r. In this case let i, a,
b and c of (*) be, respectively i, i, r and the first node on P in H0.

Now assume is not in/4. No edge enters H from outside except those which
enter r, thus H with root r is irreducible, since G is. Since H is a proper subgraph of
G, it has (*) by induction. Thus G also has (*).

REFERENCE

Eli M. S. HECHT AND J. D. ULIMAN, Flow graph reducibility, this Journal, (1972), pp. 188-202.

SIAM J. COMPUT.
Vol. 3, No. 3, September 1974

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS*

SUSAN L. GRAHAMS-

Abstract. It is shown using phrase-structure-preserving grammatical transformations that the
family of (1, 1) bounded right context languages is the same as the family of context-free deterministic
languages. The elimination of 2-rules and a reconciliation of our definition of bounded right context
with Floyd’s are also discussed.

Key words, deterministic languages, LR(k), parsing, bounded context, bounded right context,
context-free grammars, grammatical transformations

1. Introduction. The class of context-flee grammars called bounded right
context was introduced by Floyd [2. These grammars have the property that
they are unambiguous, that parsing of sentences in such languages can be done
left-to-right without backup in linear time and that each parsing decision can be
made locally, that is, on the basis of a bounded number of characters. Further-
more, the class includes grammars amenable to many of the efficient parsing
techniques used at that time or discovered subsequently, in particular, methods
in which analysis algorithms can be mechanically generated from the grammars.
Thus there is a concern both for generality and for efficiency. Floyd commented

The procedure for bounded context analysis described here for nontrivial languages and con-
texts of more than one character, may make unreasonable demands on computer time and storage
space. It seems unlikely to supplant such efficient specialized techniques as those based on operator
precedence; it may serve, however, to illuminate the relationship among existing efficient techniques
and to suggest their appropriate generalizations.

A further advance in the direction of unification and generality without
extreme loss of efficiency was provided by the LR(k) grammars defined by Knuth
[7. He showed that these grammars generate all of the deterministic context-flee
languages, yet are "sufficiently simple that an efficient left-to-right parsing
algorithm could be mechanically generated." It is easily shown that the family of
LR(k) grammars properly contains the family of bounded right context grammars.

In this paper we investigate the language and structural properties of bounded
right context grammars. We show that the (1, 1) bounded right context grammars
generate all of the deterministic context-flee languages. That is, it suffices to use
contexts of one character for these methods of syntactic analysis. Moreover, we
obtain this result primarily by means of grammatical transformations which can
be made on the full class of grammars and which preserve the phrase structure of
the generated language. We also examine the role of -rules in these grammars
and consider the use of a definition of bounded right context which includes such
rules.

* Received by the editors December 14, 1972, and in final revised form February 13, 1974.- Department of Computer Science, University of California at Berkeley, Berkeley, California
94720. This work was supported by the National Science Foundation under Grants GJ-474 and
GJ-43318. An extended abstract including this work was presented at the IEEE 11 th Annual Symposium
on Switching and Automata Theory, 1970, and appears in the Conference Record.

Bounded context is a subclass of bounded right context in which the left-to-right assumption
is not made.

224

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 225

In 2 of the paper, we give our definitions and notation. Section 3 contains
structure-preserving transformations to take LR(k)and (re, k) BRC grammars
into (1, k) BRC grammars. It is from these transformations that we get our
characterization of the deterministic context-free languages. In 4, we investigate
the use of 2-rules and show that they can be eliminated from LR(k) and (m, n)
BRC grammars. In 5, we demonstrate that our definition of bounded right
context is consistent with that of Floyd. Section 6 contains some concluding
remarks.

This paper is one of three based on [3]. In the subsequent papers [4], [5],
the transformations and results presented here are used to develop further results
about bounded right context and precedence languages and grammars.

2. Definitions and notation. An alphabet or vocabulary is a finite set of symbols
(designated by a possibly primed, subscripted or superscripted upper-case italic
letter). Strings are sequences of symbols from an alphabet. The length of a string
x, designated Ixl, is the number of occurrences of symbols in the string. The
string of length zero is denoted by 2. If x is any string, then for any integer k => 0,

f
lasts(x)

Y

f
first(x)

Y

if xl c,
ifx=zyandlyl =k;

if xI =< ,
ifx=yzandlYl =k-

For any string x and any k, 0 __< k __< Ix[, lastk(x) is a suffix of x and firstk(x) is a
prefix of x. For any alphabet V, V* denotes the set of all strings formed from
symbols of V and V + V* {2}. For any alphabets V1 and V2, a homomorphism
h" V1 V is a mapping of elements of V1 to strings in V. The homomorphism is
extended to strings in V]’ by the rules that h(2) =/l and for every a V1, x V’,
h(xa) h(x)h(a).

A (context-free) grammar is a 4-tuple G (V, Vr, P, S), where Vr
_
V is an

alphabet of terminal symbols, VN V Vr is a nonempty alphabet of nonterminal
symbols, P is a finite set of rules or productions A a, where A e VN and a e V*,2

and S e Vu is the initial symbol.
As usual, with respect to a grammar G (V, Vr, P, S) we define the relation

on V* x V* such that for any a e V*, b e V*, a b if and only if there exist
U V, a, re, u V* and U u in P such that a crUrt and b auto. We rep-
resent by a> () the transitive closure (reflexive-transitive closure) of . For any
n >= O, aie V*, where 0 =<iN n, we call the sequence ao =>al =... =a,, a
derivation of a,, from ao of length n in G. We refer to the process of reconstructing
a derivation, given a string of terminal symbols and a grammar, as parsing. If
ao =:, al =::> == a,,, where for 0 <= < n, a o’iUi and ai+ riuiTCi for some

ai V*, rc Vr, and Ui ui in P, the derivation is a rightmost derivation. A string
u is a sententialform if S : u. The string u is a rightmost sententialform if there is
a rightmost derivation such that S , u. The language L(G) defined (or generated)
by G is the set of all sentential forms with no nonterminal symbols. Thus

rule A a is called a 2-rule if a

226 SUSAN L. GRAHAM

L(G) {u e VrlS g* u}. Grammars G and G2 are said to be equivalent if they
define the same language (that is, if L(GI)= L(G2)). Finally, a grammar
G (V, VT, P, S) is reduced either if P is the empty set or if for every X e V, there
exist , fl e V* such that S X//and there exists e V. such that X g* t.

We next define the two families of grammars with which we are concerned.
The LR(k) grammars were first defined by Knuth [7]. Our definition is essentially
the same as his except for our added condition on derivations of the initial symbol.

DEFINITION. Let G (V, VT, P, S) be a context free grammar such that there
is no rightmost derivation S : S in G.3 Let $ be a symbol not in V. G is an LR(k)
grammar (k __> 0) if the following property holds for every rule U u in P and all
"C, O" e V*; X e VN; v1, v2, u, (De VF{$}* such that Iv[k.

If S$k , r, Uvv zUVVl and S$, axe) zuvv2 are rightmost derivations
inG,thenr=a,co=vv2andX= U.

Our family of bounded right context grammars (which we designate as BRC
grammars) is larger than the family of bounded right context grammars defined
by Floyd [2] (and designated here as FBRC grammars). We examine the relation-
ship between the two definitions in 5.

DEFINITION. Let G (V, Vr, P, S) be a context-free grammar such that there
is no rightmost derivation S , S in G. Let , $ be symbols not in V. G is an (m, n)
BRC grammar (m, n => 0) if the following property holds for every rule U u in
P and all T1, T2, 0", te {}*V*; Xe VN; 121 Y2, U, (_De V,{;}* such that Itl- rn
and [v[n.

If ’S$" rltUVVl rxtuvvl and ms$" : aXe) "c2tuvv 2 aXO) are right-
most derivations in G,6 where [co[=< [VVz[, then a "Czt, CO VV2 and X U.

G is a BRC grammar if for some m, n _>_ 0, G is an (m, n) BRC grammar. We
designate by BRC the class of languages generated by BRC grammars and by
(m, n) BRC the class of languages generated by (m, n) BRC grammars.

The restriction on Io[is a fundamental part of the definition, which serves
to restrict consideration of u to occurrences wholly within o-x. Its importance is
illustrated by the following example:

Let G ({S, U,A, Y}, {a, b, c, u, uz, v}, P, S), where

P: S aA Uvlc Yu2D

U---UlU2

A aAla

Y bAul.

If such derivations are not excluded, the grammar may be ambiguous even if it satisfies the
subsequent property.

’ Without loss of generality, we follow every sentential form in a derivation by the same string
taken from a disjoint vocabulary. (Additionally, in derivations for BRC grammars, we precede every
sentential form by the same string.) This is done in order to insure that we always have strings of
the designated lengths and thereby to simplify notation.

See footnote 3.
See footnote 4.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 227

(2.1)

(2.2)
(2.3)

P has rightmost derivations

S = aA Uv aAuuzv
S : aAu hi21) aaAuau2v
S = c Yu2v cbAuxu2v,

where the underlined substrings are right parts of the rules used in the last step
of each derivation. If we use the definition as stated, then G is a (1, 1) BRC grammar.
However, without the restriction, derivations (2.1) and (2.2) would violate the
(1, 1) BRC property, even though (2.2) only extends (2.1) by one step. Also, deriva-
tions (2.1) and (2.3) would violate the (1, 1) BRC property.

In Floyd’s paper, the bounded right context grammars are introduced by
first defining and motivating the class of bounded context grammars. The two
classes are not the same. One obtains a definition of Floyd’s class of bounded
context grammars by removing the restriction to rightmost derivations through-
out the FBRC definition in 5. It can be shown that the bounded context gram-
mars are a proper subclass of the bounded right context grammars and that
proper inclusion holds for the corresponding language classes as well.

3. (1, 1) BRC and the context-free deterministic languages. In this section, we
present transformations to construct for any (m, n) BRC grammar an equivalent
(1, n) BRC grammar and for any LR(k) grammar an equivalent (1, k) BRC grammar.
Using these results and theorems of Knuth 7], we obtain our characterization
of the deterministic languages. Our primary concern in choosing these trans-
formations is that they preserve the "phrase structure" of the language as much
as possible. We are also interested in achieving minimal differences in size between
the vocabularies and the production sets of the original and transformed gram-
mars. Consequently the transformations we present are more complex than they
need be if our interest were only in the equivalence results.

We present a general transformation in Theorem 3.1. Most of the subsequent
transformations are special cases of this one. The idea of the transformation is
that in the rightmost sentential forms of the transformed grammar, we encode in
certain nonterminal symbols information about the symbols to their left. The
encoding is determined by an encoding function g, which is a function of a symbol
of the original vocabulary and the new symbol which will occur to its left. The
encoding function must satisfy three conditions. Condition (gl) says that every
X in the original vocabulary is replaced either by itself or by a bracketed symbol
[Y/, X]. Conditions (g2) and (g3) are consistency conditions which insure that if
the rules of the grammar are transformed using the encoding function, the en-
coding extends to rightmost sentential forms. That is, every symbol in a right-
most sentential form of the new grammar is a function of the symbol to its left
and the symbol to which it corresponds in the original vocabulary.

More precisely, we have the following.
DEFINITION. Let G (V, V,, P, S) be a context-free grammar. Let

Y4# {/10=< i=< s,s_>_ 0)
be a set of distinct objects. Then V {/, X]lY/i Y/#, 0 =< _<_ s and X V} is

228 SUSAN L. GRAHAM

the new nonterminal alphabet determined by V and A function g" (V LI Vii
V V U Vii is an encoding function if

(gl) for every X in V and every Y in V U Vt,

g(Y,X)6 {X} U {[/, X], 0 < _< s};

(g2) for every X in V and every Y in V U Vt, if g(Y, X) [#/, X] for some i,
0 _< =< s, then for each U in V such that U Xa, where a V*, it is also
the case that g(Y, U) [//, U];

(g3) for every U in V and every Y in V U Vt, if g(Y, U) l-, U] for some i,
0 =< < s, then for each X in V such that U , Xa, where a V*, either
g(Y,X) [Y//, X] or for every Z in V U Vt, g(Z,X)= X. In the latter
case, X is said to be fixed under g.

Example. Given a context-free grammar G--(V, V., P, S), the simplest en-
coding function would be that for every X and Y in V, g(Y, X) X. (In this case,

and Vii are empty and all of V is fixed under g.) Almost as simple is to let
#/’= V and Vii { Y, X][Y, X V} and to define g by"

for every X and Y in V and every [Z, Y] in Vt,

g(Y, X) g([Z, Y], X) Y, X].

In this second definition, encoded within the second argument of g is the counter-
part of the first argument in the original vocabulary.

The transformation is carried out left-to-right on the right parts of each
rule of the original grammar and is determined by replacing each symbol after
the first by the encoding function of the symbol and the new symbol to its left.
(As a consequence of condition (g2), the leftmost symbol is unchanged.) If a
terminal symbol x is replaced by a nonterminal symbol [//, x], we add a rule
[Y/, x] x to generate the terminal. Additionally for every rule having a left
part which is not fixed under g, we add new rules in which the left part is replaced
by a corresponding bracketed symbol and the leftmost symbol of the right part,
if it is not fixed under g, is replaced by a bracketed symbol containing the same
encoding information (thereby insuring that condition (g3) will extend to right-
most derivations). A bracketed symbol generates the same set of terminal strings
in the transformed grammar as its second component generates (in either gram-
mar). There is a one-to-one correspondence between rightmost derivations in the
original grammar and rightmost derivations in the transformed grammar, and
between derivation steps in the original grammar and sequences of derivation
steps in the transformed grammar. (The extra steps in the transformed grammar
come from the use of rules [Y, x] x, x VT to "erase" the context information.)
Details of the transformation are contained within the theorem, which is followed
by an example.

THEOREM 3.1. Let G (V, V., P, S) be an (m, n) BRC grammar (m > 0). Let
W {/10 <i<= s,s > 0} be a set of distinct objects, let Vt] be the new non-
terminal alphabet determined by V and Y, and let g "(V U V) V V LJ V[be
an encoding function. Then the following transformation yields an equivalent (m, n)
BRC grammar G’ (V’, Vr, P’, S).

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 229

Transformation. Let V’ Z V 1.3 V there is some X in V and some Y in
V U Vtl such that g(Y, X)-- Z} U V. Construct P’ as follows"
(3.1) For each rule X X,X2 Xk in P, k >= O.
(3.1a) If k O, then put X 2 in P’. Otherwise put X X’IX’ X’ in P’, where

X’ X, and for 2 <=j <_ k, Xj g(X_x,Xj).
(3.1b) For every #/i, X] in V’ V, 0 <= <= s, if k O, then put [i, X] 2 in

P’. Otherwise put I/,X] XIX2 X in P, where

if X is fixed under g,

otherwise,

’X"and for2 <=j < k, Xi gt i_,

(3.2) For each x V, for every #/i, x] in V’ V, 0 <_ s, put [i, x] x in
p.

Proof. The transformation replaces every X V in every rule either by itself
or by a bracketed symbol [/, X] (because of condition (gl)), where the replace-
ment is a function of the preceding symbol and the carries information about
the symbol or symbols to the left of X. As shown by Fact 1, step (3.1b) of the
transformation (together with conditions (g2) and (g3)) extends this encoding of
left context to rightmost derivations. As shown by Fact 2, every rightmost deriva-
tion of G’ contains this context information.

FACT 1. For every A V, z Vr, x V*, where x X1X2 Xk, k >= O, and
for <= <= k, X V, if there is a rightmost derivation A xz in G, then

(a) there is a rightmost derivation A X’aX’2 X’z in G’ of greater or equal
length, where X’, X and for 2 _< j <= k, Xj g(X}_ , X1);

(b) for every [/,A]e V’-V, 0 <=i < s, there are rightmost derivations
[_ii, A] X’’v’’. 2 Xz in G’, where

x’= ifX is fixed under g,

otherwise,

and for 2 <= j <= k, Xj g(Xj_ 1, X
Proof. The proof is done by induction on the length of a derivation in G.
Define a bracket-and-context-erasing homomorphism h by"

for each [/, X] V’ V, 0 _< <_ s, h([/g, X]) X;

for each X V, h(X) X.

FACT 2. For every A V’, z VYr, x e(V’)*, where x X1X2 Xk,k - O,
and for <= <= k, Xi V’, if there is a rightmost derivation A , xz in G’, then

(a) there is a rightmost derivation h(A) Y Y2 Yz in G, where, for
=<i=<k, Y=h(Xi);

(b) x Y’ Y Y’, where

if A [#5, U] for some , U V
and Y1 is not fixed under g,

otherwise,

and for 2 <_ j <_ k, Yj g(Yj_ 1, rj).

230 SUSAN L. GRAHAM

Proof. The proof proceeds by induction on the length of a derivation in G’.
It follows from Fact and (a) of Fact 2 that L(G) L(G’). Suppose G’ is not

an (m, n) BRC grammar. Since there is no rightmost derivation S S in G (be-
cause G is an (m, n) BRC grammar), it follows from Fact that there is no right-
most derivation S : S in G’. Therefore for some X, U e V’- Vr; u, xe(V’)*;
’1, ’2, t, 0" {}*(V’)* Vl, v2,), O) t VF{$}* such that It[m and Iv[n, there
are rightmost derivations

(3.3) cmssn = ZltUVv =: zltuvv

and

(3.4) ms$" : tTXo) =*" fix,o) "r 2 tuvv 2

where Icol _-< Ivv21 and either tr - z2t or co 4:vv2 or X q: U.
Case 1. h(U), h(X)s Vs. By Fact 2, there are corresponding rightmost

derivations

and

ms$" h(z U)vv =,. h(z tu)vv

’S$ = h(crX)09 =,, h(ax)o) h(’c2tu)vv2

in G, where Iol _-< Iv21, (Notice that h is length-preserving.) Since G is an (m, n)
BRC grammar, it cannot be the case that h(a) h(’c2t) or o) - vv2 or h(X) h(U).
Suppose h(tr) h(z2t), o) vv2, and h(X) h(U). Then Irl -12tl and therefore
a r2t (since r is a prefix of z2tuvv2). Thus (3.4) has the form ms$ z2tXvv.
=*" r2tuvv2. Since h(X) h(U), it follows from Fact 2 that X U. Therefore this
case can arise only if G is not an (m, n) BRC grammar.

Case 2. h(U) Vs, h(X) Vr. Since (3.4) is a rightmost derivation, it must be
of the form

(3.5) "S$" ff’X’o)’ =, ff’x’oo’ g, ffXoo ::,, 7x60 -c2guvv2

where Ico’l _-<]o)l, h(X’)e Vs, and all steps in the derivation after a’X’o)’
use rules created by step (3.2) of the transformation. It follows that h(a’x’rJ)’)

h(rztuvv). The argument of Case holds for (3.3) and (3.5).
Case 3. h(U) Vr. Let T be the rightmost symbol of t. It follows from Fact 2

and the form of (3.3) that U g(T, h(U)). Since h(U)e Vr and U u is in P’, it
is a consequence of step (3.2) of the transformation that h(U) u and therefore
that u e Vr and U g(T, u). Since U e V’ Vr and, from condition (gl), g(T, u)
V’ Vs, it must be the case that g(T, u)e V’ V. Therefore no right part of a

rule in P’ can contain T followed by u. It follows that Itrl _-> It2tl. Furthermore, it
follows from Fact 2 that u cannot occur in a rightmost sentential form of G’
immediately to the right of T, but to the left of the rightmost nonterminal. There-
fore cr z2t x uv’ for some v’e Vr, j >= 0, such that v’ firstj(vv2) and
X uv’ is in P’. If this rule is in P’ by virtue of step (3.1) of the transformation,
then P contains a rule h(X) uv’. If so, then since u is not fixed under g (because
g(T, u) s V’ V), it follows from condition (g2) that g(T, h(X)) V’ V and from
step (3.1) and the fact that u e V that X e Vs. But by Fact 2, X g(T, h(X)),
contradicting this possibility.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 231

Therefore X uv’ can only be in P’ by virtue of step (3.2) of the transfor-
mation. Consequently v’ 2 and h(X) u. It follows that w vv2 and

X g(T, h(X)) g(T, u) U.

Therefore this case cannot occur.
Since none of the cases in which G’ might fail to be an (m, n) BRC grammar

can occur, G’ must be an (m, n) BRC grammar.
COROLLARY 3.2. Let G (V, VT, P,S) be an LR(k) grammar. Let the trans-

formation and the associated sets be as in Theorem 3.1. Then the transformation
yields an equivalent LR(k) grammar G’ (V’, Vr, P’, S).

Proof. Let z r and drop the restriction on]col in the proof of the
theorem.

Example. The following grammar G (V, VT, P, S) will serve as an example
for 3.

Vzv {S,X, ,Z, U,, U2}, VT {a,b,c,y,z,u,t},

P: S aaXlbbXlbbY[ccYlccZ

X --. tUy

Y tUz
Z - tU2Y
Uu
U2 -- u.

Suppose we use the simple form of encoding that a bracketed symbol con-
tains the symbol to its left in the corresponding string of the original vocabulary.
Then V and V {IX, Y]IX, Y V). We can define g by:

for every X, Y V, [Z, X] VI,
g(X, Y) g([Z, X], Y) IX, r].

Clearly g satisfies the conditions of the theorem. The reduced transformed
grammar has rules P’:

(from step (3.1a))

S a[a, a] [a, X][bib, b] [b, X][bib, b] [b, Y][c[c, c] [c, Y][c[c, c] [c, Z]

(from step (3.1b))

[a,X] [a, tilt, U][U,y]

[b,X] [b, tilt, U][U,y]

[b, Y] - [b,t][t, U][U,z]

It, Y] It, tilt, U][U,z]

It, Z] Ec, tilt, U2][U2,

It, Vii It, u]

It, V2] It, u]

232 SUSAN L. GRAHAM

(from step (3.2))

[a,a] a

[b, b] --. b

[C, C] C

[U, y] --, y

[U2, y] --* y

[U1, z z

It, u] -- u

[a t]

[b, t]

[c, t] t.

The rightmost derivation S = bbX bbtUly =.. bbtuy of G becomes

S=,, b[b,b][b,X] = b[b,b][b,t][t, UI][U,, y] b[b,b][b,t][t, U1]y

= bib, b] [b, t] It, u]y = bib, b] [b, t]uy = bib, b]tuy = bbtuy

in G’.
The transformation of Theorem 3.1 preserves the "phrase structure" of the

generated language in a very strong sense. Given the syntax tree of any sentence
generated by an (m, n) BRC grammar G (under the usual correspondence between
derivations and trees), the syntax tree for that sentence with respect to the trans-
formed grammar G’ will be the same up to the .relabeling of some nonterminal
nodes in a well-defined way (namely, the first tree may have a node with label Z
and the second tree have label [/, Z]) and the replacement of some terminal
nodes by nonterminals with one terminal successor. (These notions and termi-
nology could be made more precise, but the ideas should be clear. The structure-

ireservation can be deduced from Fact of the theorem and step (3.2) of the
transformation.) It will follow from Theorems 3.4 and 3.5 that any LR(n) grammar
or any (m, n) BRC grammar can be transformed to a (1, n) BRC grammar with
syntax trees preserved up to labeling and one-level extension of terminal nodes.
Therefore a semantic model (such as that of Wirth and Weber [10]) which asso-
ciates semantics with each rule, rather than with the symbols within the right part,
can be carried over directly to the transformed grammar. The key characteristic of
these transformations is that of preserving the length and symbol-wise semantic
significance of a right part. For instance, a tree is never mapped into

a tree

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 233

The transformation of Theorem 3.1 works for any choice of g. However, the
utility of the transformation depends on the care with which g is defined. Let us
consider the definition of g used in the previous example. Associated with the
grammar G are the following rightmost derivations:

S aaX aatUly aatuy

S = bbX bbtUly =" bbtuy

S = bb Y bbtUlz bbtuz

S cc Y = cct U z =, cctuz

S = ccZ =, cctU2y cctuy.

G is not a (1, 1) BRC grammar. For example (surrounding the derivations by end-
markers), with respect to the rule U1 u, the second derivation,

S$ bbtUay$ = bbtuy$

and the fifth derivation,

S$: cctUzy$ = cctuy$

violate the (1, 1) BRC condition since there are two different ways to generate u
with the same length-1 context on either side (namely, t--y). Furthermore, no
matter how much the length of the right context is increased, the two possibilities
remain. However, if the length of the left context is increased, then in the second
derivation, u is generated preceded by bbt and in the fifth derivation, u is pre-
ceded by cct. Similarly, the first and fifth derivations provide two different ways
to generate u in the same context t--y. However, in the first derivation, u is
generated preceded by aat. These are the only (1, 1) BRC violations. We need
only consider left contexts, at, bt and ct in order to exclude a BRC violation. G
is a (2, 1) BRC grammar.

(Notice that with respect to U u, the fourth and fifth derivations of G
listed after Corollary 3.2 cause a BRC violation for any length left context, so the
right context must be at least one. Had we used rules S abYlacZ instead of
S bbYlccZ, the grammar could be regarded either as (3, 0) BRC or as (2,1)
BRC. For the sake of containment within the family of LR(0) grammars, such a
grammar is treated as a (3, 0) BRC grammar.)

In the transformed grammar G’, we have encoded within the symbol re-
placing the symbol preceding it. Therefore in the corresponding derivations in
G’, It, u] (the symbol replacing u) is generated with left contexts [a, t], [b, t] or
[c, t]. This does not violate the (1, 1) BRC condition, and it turns out that G’ is
a (1, 1) BRC grammar.

In fact, the transformation with this choice of the function g always reduces
the left bound of a BRC grammar. (This is proved by taking k in Lemma 3.3.)
Therefore at most m repeated applications of the transformation transform
any (m, n) BRC grammar to a (1, n) BRC grammar. By a straightforward change in
the way we define g, we can get the (1, n) BRC grammar directly. Instead of en-
coding in each symbol the symbol preceding it in the original grammar, we encode
the k or fewer symbols preceding it, for some k, 0 < k < m, and thereby reduce

234 SUSAN L. GRAHAM

the left bound by k. In Lemma 3.3 we give the appropriate definition of g and
prove that the left bound reduction does occur.

LEMMA 3.3. Let G (V, VT, P, S) be an (m, n) BRC grammar (m > 1). For any
k, 0 < k < m, G can be transformed to an equivalent (m k, n) BRC grammar.

Proof. Let k be some fixed value, 0 < k < m. Let {x e V*I1 __< Ix[< k}.
(Thus V {Ix, Bill =< Ix[<= k, x V*,B V}.) Transform a to G’ by the trans-
formation of Theorem 3.1, where for every X e V, [y, Y] e V,

g([y, Y], X) [last(yY), X],

and for each X and Y in V,

g(Y, X) [Y, X].

Clearly, g is an encoding function. Therefore L(G)= L(G’) and G’ is an (m, n)
BRC grammar. It remains to show that G’ is an (m k, n) BRC grammar.

Suppose not. Since G’ is an (re, n) BRC grammar, there is no rightmost
derivation S S. Therefore for some rule U u in G’ and some X, U e V’ VT;
u, xe(Y’)*; rx, 2, t, ae {}*(Y’)*; ll, v2, V, (_De(Y’)*; Te V’U {} such that
It[rn k and Iv[n, there are rightmost derivations

"S$" zx TtUvvx "c TtUVVl
and

,mssn : aX(.o ::, fix 60 "C 2 Ttuvva
in G’, where I(ol _-< Ivvzl and either a -- r2 Tt or X - U or co 4: VVz.

We follow the case analysis of Theorem 3.1.
Case 1. h(U), h(X) Vu. By Fact 2 of Theorem 3.1, there are corresponding

rightmost derivations

ms$" h(’Cl TtU)vva =:, h(’c Ttu)vva

and

ms$" : h(aX)ro ::,. h(crx)ro h(’c2 Ttu)vvz

in G, where]col =<]vv21. Since G is an (m, n) BRC grammar, last(h(r)) -- last(h(r2)).
Therefore, T 4: . Since g maps every pair of arguments into a symbol in
and since in at least one of the derivations there are elements of V’ to the left of
T, Te Vt (by Fact 2). However, it is easily shown by induction on p that for any
stringX[xE,X2J[x3,X3] [xp, Xp]in V + and any 0 < k __< m, iffor 2 __< =< p,
xi lastk(xi_Xi_), then xi lastk(XX2’’’ Xi-). That is, encoded in each
bracketed symbol is the image under h of the length-k string to the left of it.
Therefore, for some z e V*, Z V, T [z, Z], where

z laStk(h(z)) and z- laStk(h(z2)).
But this contradicts the fact that laStk(h(z)):/: lastk(h(z2)). Therefore Case
cannot occur. The other cases are ruled out by arguments analogous to those of
Theorem.3.1. It follows that G’ is an (m k, n) BRC grammar.

We now have a way to transform (m; n) BRC grammars to equivalent (1, n)
BRC grammars. However, as can be seen even from the previous example (where

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 235

m 2), the transformed grammar may become significantly larger than the
original grammar. The reason is that we have. made some changes in the original
grammar that were unnecessary in order to achieve the desired BRC property.

Let us reconsider the previous example. The only left contexts of length two
that we need to consider have second symbol t. Therefore is the only symbol
which needs to be replaced by a bracketed symbol containing its predecessor.
Furthermore, if we look at the two sets of rightmost derivations which violate
the (1, 1) BRC condition, we see that it suffices to know when is preceded by c
and when it is preceded by other symbols (namely a or b). Consequently, by par-
titioning the set {a, b, c} of left contexts of into {a, b} and {c}, we can encode sets
of left contexts in the bracketed symbols replacing t. Furthermore, we can let the
larger of these subsets, {a, b}, be part of the default case in which the encoding is
implicit. Therefore we let {{c}} and define g by

g{c, t) [{c}, t];

for every A e {X, Y,Z}, g(c, A) [{c},A] (to satisfy condition (g2));

for every A e(V U Vt) {c}, for every Be {t,X, Y,Z}, g(A, B) B;

for every A e V U V 1, for every B e V {t, X, Y, Z}, g(A, B) B.

The reduced transformed grammar G" (V", Vr, P", S) has rules P":

(from step (3.1a))

S aaXlbbXIbb Ylcc[{c}, Y]I cc[{c}, Z]
X tUly

Y tU12
U1--u
U2--bl

(from step (3.1b))

[{c}, Y] [{c}, t]Uiz

[{c}, Z] {c}, t]U2y

(from step (3.2))

We have changed only those symbols whose context-encoding was relevant
for the BRC condition (or necessary for transmitting context) and we have grouped
together those contexts which occur similarly in rightmost derivations. (Any time
occurs in a rule which is not formed by step (3.2), it has left context in (VU{})
{c}.) We now specify these conditions in general.
DEFINITION. Let G (V, Vr, P, S) be an (m, n) BRC grammar, m > 0. For all

T1, T2 e V U {}, te V*, Itl < m, if, for some rule U--, u in G and some Xe V,
r l, r2 ,a e {}* V*;vl, v2, o9, v e VYr{ $}* where Ivl n, G has rightmost derivations

cmssn : 7 Zl Uvv r Zl tuvv

236 SUSAN L. GRAHAM

and

cmss g: "cXCO = "c 2 Y2 uvv 2

(where [col _-< Ivv21 and either a 4: z2Tzt or X -- U or co # /)2) for T1 4:T2 but
not for T1 Tz, then we call (T t, Tzt) a minimal significant left context pair (in G).
We say the pair is length-k if ITlt ITzt k.

Thus, the minimal significant left context pairs are the shortest pairs of strings
that exclude a BRC violation. For instance, in the previous example, the minimal
significant left context pairs are (at, ct) and (bt, ct).

By defining an encoding function determined by the minimal significant left
context pairs, we get a second proof of Lemma 3.3 which produces much smaller
grammars than the transformation used in the first proof.

Second proof of Lemma 3.3. With each A e V associate a collection of non-
empty sets ’’A {XA,o, XA,1, XA,pA, PA 0} such that

(i) Xa,o;
(ii) UVA XA,j= VU {}"
(iii) the components of ’A are pairwise disjoint:
(iv) if (TArc, TzArc) is any minimal significant left context pair of length

two or greater, then T and Tz are in different components of fA;
(V) foreachA, B. V,x V* suchthatA - BandA , Bx, either fB {XB,o}

or ’A
(In general, there will be more than one way to partition V U {} into the

components of each FA. It is always possible to find such partitions since, at
worst, each FA can consist only of singletons. The increase both in the number
of rules and in the number of nonterminals resulting from the transformation is
minimized if each WA contains as few components as possible and each ’A,0 is as
large as possible.)

Let /U {W/[//__c V}. Transform G to G’ bythe transformation ofTheorem
3.1, where for every A e V, Y e V U V,

A)
[#’ A]

g(Y,
A

if h(Y) e XA,j <__ j <= Pa and XA,j,
otherwise.

Clearly, condition (gl) is satisfied. Conditions (g2) and (g3) follow from con-
dition (v) of the definition of the sets fa. Therefore g is an encoding function and
it follows from Theorem 3.1 that L(G) L(G’) and G’ is an (m, n) BRC grammar.
It remains to show that G’ is an (m k, n) BRC grammar for some k, 0 < k < m. 7

Suppose not. Since G’ is an (re, n) BRC grammar, there is no rightmost
derivation S S in G’. Therefore G’ has some length-m minimal significant left
context pair. That is, for some rule U--, u in G’ and some X e V’- Vr, t, u,
X.(V’)*; TI,.Z2, O" {}*(V’)* Vl, v2,/), co (V’)*{$}* T1, T2 V’ U {} such that
Itl m and [vl n there are rightmost derivations

’S$" = z TIt Uvv =*" z 1T tuvv

All one can guarantee is k 1. However, as a "side effect" the transformation may reduce the
left bound further.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 237

and
,mssn = o’X(D :: O’X(_D 2 T2tuvv2

in G’ where T1 4: T2, [J)l _<- Ivv2l and either r - z2T2 or X . U or co - vv2.
We follow the case analysis of Theorem 3.1.
Case 1. h(U), h(X) VN. By Fact 2 of Theorem 3.1, there are corresponding

rightmost derivations

"S$" h(r T1 U)vv =,, h(v T1 tu)vv
and

’S$" h(X)co =*, h(ax)o) h(’c2 Tztu)vvz

in G, where Iol Ivvzl. Since G is an (m, n) BRC grammar, h(T1) h(Te) and
(h(Tlt), h(Tt)) is a minimal significant left context pair in G. Since Itl > 0, h(t)

Ar for some A e V, rce V*. By construction, h(T1)e Y’A,, h(T2)e :TA,j, =/: j.
Consequently by definition of g, g(T1,A) g(T,A), contradicting the facts
(using Fact 2 of Theorem 3.1) that T is followed by g(T1, A), T2 is followed by
g(T2, A), and both are followed by t. Hence Case cannot arise. The other cases
are ruled out by arguments analogous to those of Theorem 3.1. It follows that G’
is an (m k, n) BRC grammar for some k, 0 < k < m. 71

In fact we can "optimize" the transformation still further. In defining the
sets A in the second proof of Lemma 3.3, we can replace condition (v) by
condition (v’)"

(v’) for every A, B V, x V* such that A = B and A Bx,
(a) Xa,o - Xn,o,
(b) for < j <_ PA, either XA,j XB,k, <= k <__ pB or XA,j c_ Xn,o.

Xn,o represents the "don’t care" symbols--those symbols which it is not necessary
to record as context information. Condition (v) was included in order that the
ensuing definition of g satisfy encoding function condition (g3), which is needed
for BRC-preservation. However, using condition (v’) above and this particular
definition of g, we could modify the transformation of Theorem 3.1 by replacing
the definition of X’ in step (3.1b) by

X if for every Z i, g(Z, X) X 1,X’
[///,X] otherwise.

It requires a separate proof (which we do not present here) that the modified
transformation with this definition of g transforms an (m, n) BRC grammar to an
equivalent (m k, n) BRC grammar for some k, 0 < k < m.

Having shown in a variety of ways that the left bound of a BRC grammar
can be reduced, we have the following conclusion.

TIJOlM 3.4. Let G (V, Vr, P, S) be an (m, n) BRC grammar. G can be trans-

formed to an equivalent (1, n) BRC grammar G’ (V’, Vr, P’, S).
Proof. Either let k m in the first proof of Lemma 3.3 or repeat the

transformation of Theorem 3.1 using the second proof of Lemma 3.3 at most
m- times. [-1

Since the structure-preserving transformation approach works for trans-
forming (m, n) BRC grammars to (1, n) BRC grammars, why not use the same sort

238 SUSAN L. GRAHAM

of transformations to take LR(k) grammars into (re, k) BRC grammars and
LR(k) grammars into LR(1) grammars? We consider both these issues.

The transformation from an LR(k) grammar to an (m, k) BRC grammar is a
generalization of the (m, n) BRC-to-(1, n) BRC transformation. We again wish to
modify nonterminal symbols to rettect their immediate left context in rightmost
derivations. We can find sets of minimal significant left contexts (see details in
[3). However, the sets of minimal significant left contexts are in general infinite
regular sets. Therefore we cannot reduce minimal significant left contexts one
symbol at a time (as we did in the second proof of Lemma 3.3), since their lengths
are unbounded.

For example, consider a set of rules which is a modification of the set in the
BRC example following Theorem 3.1

P: S aaXlbbX[bb Ylcc YlccZ
X tXltUly

Y tYltU1 z
Z tZltU2y

U1--bl

Here an occurrence (in rightmost sentential forms) of U1 generated by
X tUy is distinguished from an occurrence of U2 by left contexts at + and
bt + for U1 and ct + for U2. The set of minimal significant left contexts of length
two or. greater is {(ati, cti)li > 0} U {(bt, ctli > 0}. We can reduce the context
information by transforming P to a set of rules P’ in which we have replaced
occurrences of following c by a bracketed symbol indicating that fact. For
example,

P’ S aaXlbbXIbb YIcc[c, Y] cc[c, Z]

X --+ tXItUay

Y tYItUlZ
[c, Y] [c, t] Ec, Y] [c, t] u lZ

[c, z] - [c, t] [c, Z] [c, t3 U2y

U1-.bl

U2 -- u

However, the occurrence of c in a rightmost sentential form may be an unbounded
distance from the occurrence of U or U2.

Although this transformation is in form similar to that of the BRC example,
the transformation is not, in general, made solely on the basis of the preceding
symbol, but rather on the basis of-the preceding context. The left context of U2
is cc[c, t] +, whereas the left context of U1, when generated by X tUy, is aat +.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 239

In fact this transformation has all the combinatorial complexity associated with
constructing general LR parsers. We can use the transformation of Theorem 3.1
with yet another encoding function g to incorporate in the bracketed symbols of
the transformed grammar the state sets or LR(k) tables which would be used by
an LR parser.8 The encoding is done in such a way that the sequence of non-
terminals in any rightmost sentential form of the transformed grammar cor-
responds to the stack contents of the corresponding configuration of an LR
parser for the original grammar. The only difference is that the sets of LR(k) items
at the bottom and top of the parsing stack are missing from the encoding and the
brackets are present. The sets Y/ used in Theorem 3.5 correspond to the
state sets or LR(k) tables of the LR parser.

THEOREM 3.5. Let G V, VT, P, S) be an LR(k) grammar. G can be transformed
to an equivalent (1, k) BRC grammar.

Proof. Let f {IX x x2, b/llX " X1X2 is in P, Xx,X2 V*, Ll VF{$}*
lul k} be the set of LR(k) states or items. Let {//1/_ W, 0 =< < s}.
Thus each is a state set or set of LR(k) items. The are numbered arbitrarily,
except that o is formed as follows"
(a0) for each rule S - x in P,

(b0) for each IX .Yx, u]eo, for every rule Yy in P, for each w,
v e V{$}* such that Iv[k and xu vw,

[--, .y, v]e %.
Define a function f"/ x V --, # by"

f(#/, Y)=

where
(al) for each IX xl" Yxz,u] , IX xIY.xz,u] #/
(bl) for each IX --, xl Yxz,u]e, for each Y-, y in P, for each w, vs V-{$}*
such that Iv[k and x2u " vw,

Transform G to G’ by the transformation of Theorem 3.1, where for each X e V,
E/, Y]

for each X, Y e V,

g([//, Y], X) [f(/, Y), X],

g(Y, X) [f(oo, Y), X].

Clearly g is an encoding function. Therefore, by Corollary 3.2, L(G) L(G’) and
G’ is an LR(k) grammar. It remains to show that G’ is a (1, k) BRC grammar.

Since g maps every pair of arguments into a symbol in Vtl, it follows from
Fact 2 of Theorem 3.1 that every rightmost sentential form x is in VV’VYr U Vr.

We assume the reader is somewhat familiar with LR parsing. The reader is referred to Aho

and Ullman [1, 5.2] or Knuth [7, II] for a discussion of this subject.

240 SUSAN L..GRAHAM

The first elements of the bracketed symbols carry information about left context
in the following ways.

FACT 3.9

(a) For each [X .x, s] Uo, S$ Xsco is a rightmost derivation in G for
some o Vr{ $}*.

(b) Let SSk Uo[/, U][/, U2] "-[/,, Up]v be any rightmost deriva-
tion in G’, where v 6 Vr{ $}k, p >= O, Uo V. Then for every j, <= j <= p,
and for each [X-Xl.X2,s]6/., x U+xU+... Uj_, -1 <=q
<= j- 1, and SSk: UoU UXso is a rightmost derivation in G, for
some co Vr{ $}*.

Proof. (a) The proof is by induction on the number of elements in 0.
(b) The proof is by induction onj (each case is by induction on the size of /).
Thus each element of each g/ corresponds to some rightmost derivation of

a sentential form with prefix UoU Uj_ .
FACT 4. Let

S$: tU’vv => tUa+ l[//q 2, Uq+ 23 [q+ 3’ Uq+ 3] [/p,
be any rightmost derivation in G’, vv V{$}, [vl k, q Itl 1, q p in which
the last step uses a rule formed by step (1) of the transformation, where

U ift=2
[+, U] otherwise;

Uq+
Uq+] otherwise"

and

Uo[,, u;][, uz] [,, u,].
Then"

(a) For some x V*, u Vr{$}*,o contains an item of theform IX Uox, u]
(b) For <=j <= q, contains an item of the form IX U+xU+2

_l.X, u3,forsomexeV*,ueV}{$}*,-1 r j.
(c) ,+, contains some item of the form IX U+ U,+ Uu Ux, u], for

some x 6 V*, u V{ $}*, -1 r q and the item

[U .Uq+ Uq+ 2 Up, U].

(d) For q < j p, contains the item [U Uq+Uq+2 - .,U+
Up, v].

Proof. The proof is by induction on the length of a derivation.
Thus, if we regard as implicitly preceding Uo, for 0 j p, contains

an item or state which indicates the production by which Uj was generated in
the rightmost derivation.

Now we are ready to establish the BRC condition. Suppose G’ is not a (1, k)
BRC grammar. Then for some rule U u in G’ and some X, U V’- VT; U,

See Aho and Ullman [1, Thm. 5.10].
See footnote 9.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 241

x e (V’)* rl, r2, ae {}*(V’)* v,, v2, v, co e (V’)* Te V’ U {} such that]vl k,
there are rightmost derivations

S$ "c TUvv z Tuvv

and

in G’, where Iml Ivvl and either a raT or X U or m vv:.
We follow the case analysis of Theorem 3.1.
Case 1. h(U), h(X)e VN. Suppose u Ui[, U2][, U3] [,, Up],

where
if T= ,

U’
[,, U] otherwise,

and p __> 1. By Fact 4, [U U O2"" Up_ l’Up, U U. ip, where if T and
p 1, then ip 0. It follows from Fact 3 that for some v3e V{$}*, S$

h(r2TU)vv3 =,. h(z2 Tu)vv3 is a rightmost derivation in G. By Fact 2 of Theorem
3.1, S$ h(aX)co h(ax)co h(z2 Tu)vv2 is a rightmost derivation in G, where
Icol N IVVz[. Since G is an LR(k) grammar, h(a)= h(z2T), h(X)= h(U) and
co vv2. It follows from Fact 2 of Theorem 3.1 that a z2 T, X U, and
co vv2, contradicting the non-BRC assumption. Therefore this case cannot arise.

Alternatively, suppose u 2. Since h(X) VN and aX VV, 09 VVz and
lal _-< Ir2 TI. Since G’ is an LR(k) grammar, T 4: . Let be the set of items associ-
ated with T (that is, if T e V, then 0; otherwise T [/, Z] for some Z e V).
Similarly, let be the set of items associated with X. Let U [//[, Z] for some
Z e V. By Fact 2, [U --.., v] //. By Fact 2 of Theorem 3.1, col f(t/, h(T)). If
o- "czT then IX -,., vie and f(i,h(T)) /. It follows from Fact 3
that for some v3, v4 e V{ $}*,

S$k h(z2TU)vv3 =:, h(’c2 T)vv3

and

$S h(’c2 TX)vv4 h(z2 T)vv4

are rightmost derivations in G. Since G is an LR(k) grammar, h(U) h(X). There-
fore, by Fact 2 of Theorem 3.1, U X, contradicting the non-BRC assumption.
Therefore this case cannot arise. On the other hand, if Irl < Iz2 TI, then by Fact 4,
IX t. h(T), v] /for some which is a suffix of h(’c2). Therefore

IX th(T)., v] e f(l/, h(T)) 11.
It follows from Fact 3 that for some Vs, v, e V{$}*,

S$k : h(z2 TU)vv3 := h(z 2 T)vv3

and

S$k h(rX)vv, =:, h(r2 T)vv

are rightmost derivations in G, where h(a) -- h(z2 T), contradicting the fact that
G is an LR(k) grammar.

242 SUSAN L. GRAHAM

The other cases are ruled out by arguments analogous to those of Theorem
3.1. It follows that G’ is a (1, k) BRC grammar. I-]

We have shown that there is a structure-preserving transformation for
transforming LR(k) grammars into (1, k) BRC grammars. Minimizing the increase
in grammatical size caused by this transformation can be done by using the ideas
of the second proof of Lemma 3.3 together with optimization techniques for LR
parsing tables (see, for example, [1]).

The problem with general transformations for reducing right context is that
they do not preserve grammatical structure in the strict sense used so far. In
reducing left bounds, we were able to change the nonterminals in left contexts
according to their immediate left contexts, that is, to have nonterminal symbols
carry information about their left contexts in rightmost sentential forms. This
technique is not applicable for reducing right bounds because right contexts are
composed only of terminal symbols.

Suppose G (V, Vr, P, S) is an LR(k) grammar with rightmost derivations

S , xU va =, xuva

and

S , xUavb = xuvb.

Given the sentential form xuva, in order to determine whether u is generated by
U or U, it is necessary to look beyond v to see whether v is followed by a or b.
In order to decrease the lookahead, either U and Uz must be made to generate
part of v as well as u, or u must be generated by the same rule in both contexts. In
the former case, the shape of the syntax tree is changed; in the latter, two distinct
cases (possibly having different associated semantics) are transformed to one.
(These issues are discussed further in [3], which also contains structure-modifying
transformations which reduce right context.)

The language characterization follows easily from Theorem 3.5.
THEOREM 3.6. Every deterministic context-free language is generated by a

(1, 1) BRC grammar.
Proof. Knuth [7] states that every deterministic language is generated by

an LR(1) grammar. (More complete proofs appear in [6] and [8].) Theorem 3.5
sharpens the condition to (1, 1) BRC.

Theorem 3.6 can be sharpened further by putting additional restrictions on
the(l, 1) BRC grammars. We have shown [3] that a variation of the transformations
presented here preserves the disjointness of the Wirth-Weber simple precedence
relations [10] (i.e., if these relations are disjoint for the initial grammar, then they
are disjoint for the transformed grammar) and that any LR(k) or (m, n) BRC
grammar can be transformed to an equivalent such grammar with disjoint simple
precedence relations. (The variation consists of adding {Ix]Ix Vr} to V’, changing
the definition of X’ in step (3.1a) of the transformation of Theorem 3.1 to

if X Va, and X is not fixed under g,

otherwise,

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 243

adding to the transformation of Theorem 3.1 the step
(3.6) For each X e Vr, if step (3.1a) has added to P’ a rule containing Ix], then

put Ix] x in P’,
extending the definition of h so that for every x e Vr, h([x]) x, and adding to
the conditions on encoding functions,
(g4) For every x Vr, if for some Y e V U Vtl, g(Y,x)e Vtl, then for every

Y V Vtl, g(Y, x) Vtl.
This insures that if terminals are replaced by nonterminals, the replacement occurs
everywhere in the grammar.) Therefore we can add the precedence-disjointness
condition to the theorem. Furthermore, we have shown [3], [4] that a subset of
the (1, 1) BRC grammars which have the added constraints of no two rules with
the same right part and disjoint (2, 1) precedence relations generate all the
deterministic languages.

4. Elimination of 2-rules. The definition of BRC grammars given in this
paper admits grammars with 2-rules. For purposes of comparison with other
classes of grammars generating the deterministic context-free languages, notably
various kinds of precedence grammars and Floyd’s formulation of bounded
right context, it is useful to investigate the necessity for the inclusion of such
rules. In Theorem 4.3 we show that it is possible to remove the 2-rules from any
(m, n) BRC grammar, at worst removing 2 from the generated language.

We prove this result in several stages. We first show (Lemma 4.1) that for
right bounds of one or more, the inclusion of occurrences of the initial symbol in
right parts is inessential, by showing that a trivial transformation removing this
condition is (m, n) BRC-preserving and LR(k)-preserving.

LEMMA 4.1. Let G (V, Vr, P, S) be an (m, n) BRC grammar, n > O, and let
So q V. Then G1 (V U {So}, Vr, P I1 {So S},So)is an equivalent (m,n) BRC

11grammar.
Proof. For any derivation S x in G, x e V*, there is a corresponding

derivation So S x in G1, where the derivation S x in G uses only rules
in P. Any derivation in G1 is of the form So S x, where S , x uses only rules
in P (since So S is the only rule in which So occurs). Therefore, L(G) L(G).
Furthermore since G is an (m, n) BRC grammar, and since there is no rightmost
derivation So + So in G a, G could fail to be an (m, n) BRC grammar only for a
derivation of length one, that is, only if there exist rightmost derivations

CmSoSn =: cms)n

and

CmSoSn : aXo,) cms’n
in G1, where I-I n, and o " or (o 4: $" or X - S. However, the second
derivation must be of the form ms05" = ms$" rXco = ms$" and therefore
cannot occur, since by hypothesis there is no rightmost derivation S S in G.
Hence G1 is an (m, n) BRC grammar, l-1

11 Notice that Lemma 4.1 and Corollary 4.2 are false for n k 0. A counterexample is pro-
vided by G ({S, a} {a}, {S Sala}, S).

244 SUSAN L. GRAHAM

COROLLARY 4.2. x2 Let G (V, VT, P, S) be an LR(k) grammar and let So q V.
Then G1 (V I,.J {So} VT, P [-J {So --* S}, So)is an LR(k) grammar.

Proof. The proof is analogous to the proof of Lemma 4.1 (with "s deleted). V1
We next show that for languages not containing 2, the inclusion of 2-rules

in (m, n) BRC grammars is inessential. As the reader can verify, a much simpler
transformation suffices to preserve the LR(k) property alone. Therefore an alter-
nate proof of this result would be to use the LR(k) transformation and to appeal
to Theorem 3.5. However, a direct proof yields a transformed grammar more
closely related to the original and a better understanding of the role of 2-rules
in (m, n) BRC grammars.

THEOREM 4.3.13 Given an (m, n) BRC grammar G (V, VT, P, S) (m, n > 0),
an (m, n) BRC grammar without)c-rules can be constructed which generates the
language L(G) {2}.

Proof. For the sake of clarity, we present the transformation for 2-rule
elimination as a sequence of less complex transformations.

We first transform the grammar Gto G1 {V U {So}, Vr,P U {So S},So},
where So V and G1 has no occurrence of the initial symbol So in the right part
of any rule. This is a temporary device, to avoid having multiple initial symbols
in intermediate stages of the overall transformation. The effect of this first trans-
formation is later "undone". By Lemma 4.1, L(G1) L(G), and if n > 0, then
G1 is an (m, n) BRC grammar. It follows from the proof of Lemma 4.1 that for
n 0, the only possible violations of the (m, 0) BRC condition are cases in which
one of the relevant derivations is mso =:, ms.

Let A {A V VrlA , 2 in G1}. (Notice that So A because So V). We
next transform G1 to a grammar in which every nonterminal which generates 2
generates only 2. We do this by creating a dual symbol Ax for each element A in
A and transferring the derivation of 2 from each element of A to its dual. Let
V {Ax[A A} be the new alphabet of dual symbols. Define a homomorphism
A - ft. from V U {So} U V to V U {So} by

ft. =A foreachAeVU {So},

Ax A for each Az e Vx.
Thus each element of Vx is mapped onto its corresponding element of A and each
element of V U {So} is mapped onto itself.

Transform G1 to G2 (V U {So} U Vx, Vr, P2, So), where P2 is formed as
follows’for each rule A --, x in P U {So S}, add to P2 all the productions A y
such that y e (V U Vx)* and y x. Thus P U {So S}

__
P2 and, in addition,

P2 contains all rules obtained by taking a rule in P U {So S} and substituting
dual symbols for one or more occurrences of elements of A in the right part of
the rule. Since P U {So --* S}

_
P2 and since the elements of Vz are not left parts

of any rules in P2, L(G2) L(G). Furthermore, it is easily shown that for any
rightmost derivation "S05" aXco rxco in G2 there is a corresponding deriva-
tion "S05" : ffXco ffffco in G 1. Since the homomorphism is length-preserving,

12 See footnote 11.
13 A somewhat similar construction is used in [9] to prove a similar result for LL(k) grammars.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 245

G2 fails to be (m, n) BRC only if G1 fails to be (m, n) BRC. Furthermore, if n 0,
the only possible violations of the (m, 0) BRC condition are cases in which one of
the relevant derivations is either "So ms or mso msz.

Having introduced the elements of Vz into the (unreduced) grammar G2, we
modify this grammar so that 2 is generated only by elements of V.

Transform G2 to G3 (V [,.J {So} {,.J V;, VT, P3,So), where P3 is formed as
follows"
(4.1) For each rule So x in P2, So x is in P3. (Notice that as a consequence

of the previous transformations, x S, Sz} .)
(4.2) For each rule Ax in P2 such that AV, ifxV, then Ax is in

P3 (where Aa is the element of Vz corresponding to A), otherwise A - x is
in P3.

P3 has the same number of rules as P2, and the rules have the same form except
that in some instances the left part of a rule is replaced by its dual symbol. By, the
usual induction on the length of the derivation, it follows that

(a) for any rightmost derivation X x in G3,
(a 1) if X V, then x (V U V)* V
(a2) if X V, then x V’;
(a3) if X x in G3, then there is a rightmost derivation y. in G2

for every y (V U V)* such that ff ;
(b) for any rightmost derivation X x in G2,

(bl) if x V’, then there is a rightmost derivation X x in G3 (where
X is the element of V corresponding to X);

(b2) if x (V I.J V)*- V, then there is a rightmost derivation X x
in G3.

It follows from (4.1) ofthe transformation and (a) and (b) above that L(G2) L(G3).
It follows from (al) that for any X V, there is no derivation X 2 in G3. It
follows from (a2)that for any X V, {x VrIX x in G3} {2}. Suppose G3
is not an (m, n) BRC grammar. By construction, there is no derivation So So
in G3, since So does not occur as the right part of any rule. Therefore, for appro-
priate rl, r2, a, t, v, va, vz, co, U u and X x, there are rightmost derivations

CmSoSn : " Uvv = z tuvv

and

So ge, tTXfo =, tyxo "CztUlV2

in G3, where logo] __<]vv2] and either a "Czt, or X :/: U, or Io91 < Ivv2[. By (a3),
there are corresponding derivations

mS05" r UVv =" z tuvv

and

CmSoSn :: (X(_D =: (TXO) "C z tUVV2

in G2, where 1091 _< [vv21. If a v z2t or 09 4: vv2, then G2 is not an (m, n) BRC
grammar. If tr z2t and 09 vv2, then U u and X u are the rules used in
the derivations in G3. If u V, then X, U V. If u (V I..J Vz)* V, then X,
U V. In either case, U X only if U - X, in which case G2 is not an (m, n)

246 SUSAN L. GRAHAM

BRC grammar. Since any violation of the (m, n) BRC condition for G3 leads to a
corresponding violation for G2, we can conclude that if n > 0, then G3 is an (m, n)
BRC grammar, and if n 0, then the only possible violations of the (m, 0) BRC
condition are cases in which one of the relevant derivations is either ’S0 ’S
or ’S0 ’Sa.

Now we will eliminate 2 from the language generated by G3, and at the same
time reverse the change made by the first transformation. Let

G4 (V 1.3 V, Vr, P3 {So S, So S}, S).

The only difference between G3 and G4 is that we have changed the initial symbol
from So to S and deleted all rules with left part So. It is easily seen that for every
x e(V U V)*-V, S,x is a (rightmost) derivation in G if and only if
So S x is a (rightmost) derivation in G3. Since S generates only 2 in G3, it
follows that L(G)= L(G3)- {2) and G is an (m, n) BRC grammar (including
the case n 0).

Now that we have isolated the use of 2-rules (i.e., only in derivations from
V) and eliminated 2 from the language, we are ready to eliminate the 2-rules.
However, it is necessary to preserve the left context information transmitted by
the elements of V. Therefore, as before, we will incorporate left-context in-
formation in the new nonterminal symbols we use. Let

VII-- {[Bi, BikA]IA 6 V, <_ k <_ m and __< j =< k, Bij e Vz}
be a new alphabet. Define a mapping 0’(V U V)* (V U Vtl)* by

(c l) for each x V, a(x) 2;
(c2) for each xAy, x V], A V, y(V U Vz)*, a(xAy) [lastm(x)A]a(y);
(c3) for eachAy, AV,y(VU V *) (Ay) A(y).
The effect of the mapping on a string in (V 12 Vz)* is to replace any sub-

sequence of one or more elements of Va followed by an element of V by a bracketed
symbol containing the last m elements of Vz and the element of V, and to drop all
trailing (rightmost) elements of Vz in the string. More formally, we have the
following.

FACT 5. Let u e (V U Vx) +. That is,.for some k O, xa X2, Xk, Xk+ V
and A,A2, Ak e V, u xaAx2A2 XkAkXk+. Then

(a) (u) z(xaA)z(x2A) Z(XkAk), where for <__ <__ k,

o(xiAi) {A if xi 2,

[last’(xi)Ai] if xi # 2;

(b) for < i_<_ k,

last,,+ I(x1A1xzA2 xiAi)

Proof. The proof proceeds by induction on k.
Furthermore, any string x in (V U Vt)* is the image under 0 only of some

string which can be obtained by inserting a sequence of elements of Va before every
bracketed symbol in x and then erasing the bracketg. More formally, let h be a
bracket-erasing homomorphism. That is, for each A V, h(A)= A; for each
[yA] e VII, h(FyA]) yA.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 247

FACT 6. Let u e (V 1.3 V[1)*. That is, for some k >_ 0 and C1, C2,"’, Ck V
Vtl, u C1C2 Ck. Let u’ be any string in (V U Va)* such that u offu’). Then

(a) for some xl,x2, x, x+l V, u’ Xlh(C1)x2h(C2) xh(C)xk+l,
where, for <= <= k, if Cie V, then xi

(b) for <= <= k,

last,,+ l(xlh(C1)x2h(C2).., xih(Ci)) last,+ I(h(C1C2 Ci)).

Proof. The proof is by induction on k.
Next we transform G4 to G5 in such a way that the mapping extends to

rightmost sentential forms.
Let G5 (V U Vii, Vr, Ps, S), where Ps is formed as follows.

(4.3) For each X x in
(4.3a) X -- e(x)is in P,
(4.3b) for all [yX] e VII, [yX] o(yx) is in P.

(4.4) For each a e Vr, for all [ya] V[1, [ya] a is in P.
This transformation bears a strong resemblance to the transformation used

in the first proof of Lemma 3.3. In that case, encoded within every bracketed non-
terminal were the up to rn symbols which preceded it in every rightmost sentential
form in which it occurred. In this case, encoded in every bracketed nonterminal
are the up to rn symbols of Vx which would precede it in each corresponding right-
most sentential form of G4. However, the symbols of Vx do not occur in rightmost
sentential forms of G5 except as auxiliary encoding, and furthermore, for any
sequence of more than m symbols of V in a rightmost sentential form of
only the last m are even represented by the encoding. (This does not affect the
terminal strings which are generated because the elements of Vx generate only 2
in 64.)

We must now show that L(Gs)= L(G4), that Gs has no 2-rules, and that
Gs is an (m, n) BRC grammar.

We know that for every X e V- Vr and X --, x, in P4, x e (V U V)*
(i.e., in the statement of Fact 5, k > 0). Therefore, by Fact 5, step (4.3) of the trans-
formation to G5 creates no 2-rules. Clearly step (4.4) creates no 2-rules. Therefore
G5 has no 2-rules. To prove the other conditions, we must use the correspondence
between derivations in G4 and derivations in Gs. We now formalize the remarks
following the transformation.

FACT 7. For every A V and x 6(V U Vx)*, if there is a rightmost derivation
A x in G4, then

(a) there is a rightmost derivation A ,. a(x) in Gs;
(b) for all [yA] VI, there is a rightmost derivation [yA) , a(yx) in Gs.
Proof. The proof is by induction on the length of a derivation in G4.

FACT 8. For every A V, [yA] VIi and x (V I,.J V[l)*,
(a) if there is a rightmost derivation A x in Gs, then there is a rightmost

derivation A , x’ in G4 for some x’ e (V U V)* such that o(x’) x;
(b) if there is a rightmost derivation [yA] . x in Gs, then there is a rightmost

derivation A x’ in G4 for some x’ e (V U Vx)* such that o(yx’) x.

Proof. The proof is by induction on the length of a derivation in Gs.
It follows from Fact 5 that for every x e V, (x)= x. Therefore we can

conclude from Fact 7 that L(G4) c_ L(Gs). It follows from Fact 6 that for every

248 SUSAN L. GRAHAM

x e V, {x’e (V U Vx)*le(x’) x} {x}. Therefore we can conclude from Fact 8
that L(Gs) c_ L(G,O. Hence L(Gs) L(G4). It is easily shown using Facts 6 and 8
that for every x e (V U Vx)*, y (V U V j)* such that e(x) y, the set of terminal
strings generated by x in G4 is the same as the set of terminal strings generated
byyin Gs.

Suppose G is not an (m, n) BRC grammar. Then there are rightmost deriv-
ations

(4.5)

and

(4.6)

ms$" z Uvv = z tuvv

cmssn : o’X(_D z2tuvv2

in G, where]col -< I/)1;21 and either a 4: "c2t or X - U or Icol <]v1;2]. The rightmost
derivations in G corresponding to (4.5) are:
(4.5.1) lfUV, then

"S$" z’ t’ Uvv = z,’a t’u’vv 1,

where (r’l) :a, e(:’t’) :t, last,.+ (t’) last,.+ (h(t)), e(u’) u;
(4.5.2) if U [yU’], U’e V- Vr, then

,.S$" : z’ t’y’ U’vv = r’ t’y’u’vv

where (z’l)= zl, (r’lt’)= rlt, lastm+l(t’)= last"+ l(h’(t)), lastm(y’)= y,
y’ V, (y’u’) u;
if U [yu], u e Vr, then

cmssn : 273U"1; :=> 273u v 3 Z’lt’y’uv’lvzvl,

(4.5.3)

where e(r’l)= zl, e(r’t’)= Z’lt /) /)1/)2, (/)i)-- /)1, last,.+ l(t’)= t,
last,.(y’)- y. The last step in this derivation is the step in which u is
generated (and corresponds to a previous step in (4.5)).

There is an analogous correspondence between (4.6) and rightmost deriv-
ations in G4. By a rather lengthy case analysis, it can be shown that for every
possible pair of derivations (4.5), (4.6), in Gs, the corresponding derivations in
G4 provide a contradiction to the fact that G is an (m, n) BRC grammar. In some
cases, the derivations immediately violate the (m, n) BRC condition. In the other
cases, the two derivations are seemingly incomparable, but (because of Facts 7
and 8) the differences are only in the occurrence of elements of Vx. Therefore by
extending both derivations (i.e. considering subsequent steps), both derivations
are found, in all these cases, to have the form which, by Fact 9 below, contradicts
the (m, n) BRC assumption. (Fact 9 says, in essence, that in an (m, n) BRC grammar
there cannot be two rightmost derivations of 2 in the same (m, n) context.)

FACT 9. For every z,, T, 2, tx, t2 (V U V,)*, Xl, yl V’, U1, U2 V, and
va v2, Vl, v2 Vr, if G4 contains rightmost derivations

S :, "1Ul1;1 =:> txXxVl and S " z2U21;2 =:> t2YlU2,

where last,.(tl.) last,.(t2), first,(vl)= first,(v2), Iv[_-< IVll and Iv2l <= Iv2l, then
Xl Yl.

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 249

as"
Proof. Suppose xl -Y: Yl. Since xl, Yl V, the derivations can be extended

and
S : TzU2Y2 := tzylV2 = tzyzV2 = t2yqv2 :: tzV2,

where p,q_>_ and for =<i=<p, l_<j=<q, x l, yjV’ and for l_<i<p,
< j < q, xi xi+ 1, Yj Yj+ , and each rule used has left part in V. Compare

these derivations step by step from right to left, erasing each step as long as both
derivations use the same production. There must be some step at which each
derivation uses a different production. Suppose p >= q (the case p < q is sym-
metric). Then at the point at which the derivations differ, the first derivation has
the form

S e, "c UlV e, tlZXV =, tlzwvl tlXiVl,

=< =< p, z, w V’, and the second derivation has the form

S : T2U2v2 : z3 Yv3
=e, -c3yv3 t2zwv2 t2yjv2,

-< j -< q, where "C3, y(V U V,O* and v3 V. If z2U2v2 r3Yv3, then v v2;
otherwise v3 v2. Therefore Iv3l -< Iv21. The existence of such derivations contra-
dicts the fact that G4 is an (m, n) BRC grammar. 1-]

COROLLARY 4.4. Given an LR(k) grammar G (V, Vr, P, S) where k >_ 0, an
LR(k) grammar without 2-rules can be constructed which generates the language
L(a)-

Proof. The transformations to G4 are easily seen to be LR(k)-preserving,
since the finiteness of the left context is inessential. In the transformation to G,
m may be chosen arbitrarily. (If m 0, then no bracketed symbols are needed.)
Exploiting the fact that any two elements of (V U Vx)* mapped by a into the
same string generate the same set of terminals, an argument analogous to that
of the theorem proves that the transformation is LR(k)-preserving. El

Example. We carry out the transformation for G ({ S, X, Y, A, B, a, b, c, d},
{a, b, c, d}, P, S) where

P" S AdXI Y

A aAI2
X - AbXI2
Y - BAcglR

G is a (1, 1) BRC grammar.

PI" Add rule So S to G.

A {S,A,X, Y,B}.

P2" So --" SISz
S AdXIAadXIAdXsIAflXsIYIY,

A aAlaAzl2

250 SUSAN L. GRAHAM

X --, AbXIAzbXIAbXz[AbXzl2
Y BAcYIBAcYzlBA,cYIBAzcYzlBzAcYIBzAcYzlBzAzcYIBzAzcYz[2

B --, 2

P :(reduced),

S AdXIAzdXIAdXz[AzdXz[Y

A aA[aAz

Az2
X AbX[AbX[AbX[AbX

X2
Y BAcY[BAcY[BAcY[BAcY

B2
P S AdX AdX Ad Ad Y

A aAla
s ZbSlUZb3SlZblhb]

Y UBAcYI UBA3clUAc3YI EAse3
BzA Bza]A [Ba3

Inca] a

Ab] b

[Ac] c

[Ad] d

As was the case in ff 3, the transformation can be further modified so that it pro-
duces smaller grammars. (For example, none of the bracketed context in the
previous example is needed for the (1, 1) BRC property.)

The preservation of structure is somewhat less than in 3. As can be seen
from Facts 7 and 8, in going from G to G, arbitrarily long sequences of 2-rule
steps, and consequently, arbitrarily large subtrees of syntax trees, are lost. For
instance, with reference to the previous example, syntax trees for ac are:

G: S G: S

Y

2 c{ A 2 [Ba]

2 a

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 251

5. Comparison with Floyd’s definition. Floyd’s original formulation of
bounded right context grammars [21 is somewhat different from ours. In this
section we show that the two formulations are essentially equivalent, differing
only in the use of the initial symbol and the occurrence of 2-rules in the grammars
and in the inclusion of 2 in the generated languages.

The following is the definition of bounded right context given by Floyd [2.
DEFINITION. Let G (V, Vr, P, S) be a context-free grammar with no 2-rules

and no right parts containing S. Let , $ be symbols not in V. For any production
U u in P, U u is an (re, n) FBRC (Floyd bounded right context) production
(m, n >__ 0) if for any t, tl s (}*V*, t2, u, ul, u2, y s V +, v s V, v, v s Vr{$)*
such that tt2, u uu2, v vv2, It[m, Ivl n and cms$n , tUv ".’
is a rightmost derivation, the following 12 cases are unsatisfiable for any right-
most derivations and productions in G and any X s V:

(BR1) "S$"...Xv..., X... tu,

(BR2) ’S$" Xu2 X tuy, y Vl,

(BR3) ms$" X ..., X tuy, y , v ...,
(BR4) cms)n , tlXV... X tzU

(BR5) ms$" : tlXV2 X t2uy, y :
(BR6) ms$" " lX.", X --, tzuy y , v

(BR7) ms$" tXv X u, X :/= U,

(BR8) cms)n , tXv2 ..., X -, uy, y :, v

(BR9) ms$" , tX X uy, y v

(BR10) ms$", tuXv... X u2,

(BRll) cms)n tUlXV2 X -- uzy y , v

(BR12) ms$" :g tUlX X -- uzy y : v

G is an (m, n) FBRC grammar (m, n > 0) if every production U - u in P is
an (m’, n’) FBRC production for some m’ =< m, n’ =< n.

G is an FBRC grammar if, for some m, n => 0, G is an (m, n) FBRC grammar.
We designate by (m, n) FBRC the class of languages generated by (m, n) FBRC
grammars, and by FBRC the class of languages generated by FBRC grammars.

In 4, we considered the differences in the two definitions of bounded right
context stemming from occurrences of the initial symbol and inclusion of 2-rules.
By comparing the two definitions in the absence of 2-rules and occurrences of
the initial symbol in right parts, we get the following theorem.

THEORF,M 5.1. (a) Every (m, n) BRC grammar with no 2-rules and no right parts
containing the initial symbol is an (m, n) FBRC grammar (m, n >= 0).

(b) Every (m, n) FBRC grammar is an (m, n) BRC grammar (m, n >= 0).
(c) (m, n) FBRC {L {2}IL e (m, n)BRC} (m, n > 0).

Here... denotes any element of {}*V*{$}*

252 SUSAN L. GRAHAM

Proof. (a) Let G (V, Vr, P, S) be an (m, n) BRC grammar with no 2-rules
and no right parts containing S. For every rule U u and every t, v such that
Itl m, Ivl n and mssn " ZltUVv = rltUVVl is a rightmost derivation in G,
each of the FBRC conditions can be expressed as a rightmost derivation

cmssn : O.lX1(-01 =, z2tuyrc :, zetuvv2,

where n e Vr{$}*, yn . vv2 and Icol] lynl Ivv2] (since G has no 2-rules). If
yn vv2, then this derivation has the form

(5.1) ms$" :, o-IXlO)I =:> "c2tuvv2,

If yn : VY2, then this derivation has the form

where

(5.2) cms)n . o’IXI(D := z2tuyrc zztua2XacozrC =, z2tuFv2,

where o’2X2CO2TC Ivv2l (since G has no 2-rules) and therefore Ico2nl Ivv2l.
Lettinga rl,co col,x xl in (5.1) and letting a r2tua2,co co2n, X X2
in (5.2), it follows from the fact that G is an (m, n) BRC grammar that in any such
derivation, a z2t, (-0 vv2 and X U. Since a z2t, (BR1)-(BR6) and (BR10)-
(BR12) are unsatisfiable; since co vv2, (BR2), (BR3), (BR5), (BR6), (BRS),
(BR9), (BRll) and (BR12) are unsatisfiable, and since X U (where a r2t
and co vv2), (BR7) is unsatisfiable. Therefore G is an (m, n) FBRC grammar.

(b) Let G (V, Vr, P, S) be an (m, n) FBRC grammar. Suppose G is not an
(m, n) BRC grammar. Since G has no right parts containing S, there is no deriv-
ation S S in G. Hence for some rules U u, X --. x, and appropriate strings
t, v, o-, co, rx, "c2, v v 2, cmssn : zxtUvv = zltuvv and ms$" : o’X(-0 "c2tUVV 2

axco are rightmost derivations in G, where Ico =< Iv21, but either (i) a r2t,
(ii) Ico < Iv21, or (iii) a z2t, co vv2 and X - U.

We enumerate the possible partitionings of r2tuvv2 into a, x, co by listing
the possible strings equal to x, where u u au2, lt2, v ray2. For each x,
we indicate the corresponding satisfiable FBRC condition.

1. Suppose co vv2.

tu

t2u
u and X - U

U2

satisfiable condition

(BR4)
(BRT)
(BR10)

2. Alternatively, suppose Icol <

tuv

tUV

UU

t2uv
UV

u2u
U2U

satisfiable condition

(BR2) y U

(BR3) y v

(BR5) y vl
(BR6) y v
(BRS) y vl
(BR9) y v

(BRll) y=vl

(BR12) y v

ON BOUNDED RIGHT CONTEXT LANGUAGES AND GRAMMARS 253

The final possibility if Io1 < Ivv21 is that x is some string to the right of u,
that is, a 2tu or a "c2tuv or a z2tuv....

In that case, z2tu was generated by previous steps in the derivation. In par-
ticular, we can write the derivation as

where e Vr{$}* and the step 6Zy 6zy generates the rightmost symbol of u.
Since 7e V{$}*, 6z aX Since a ZatU and since the derivation is
rightmost, z z2tuy for some y such that y7 , vv2.

If ff v2tu,

If a vztuvx,

If tr z2tuv ...,

then y7 , Xoo l)Y2

then y7 vaXo9 l)y2

then y7 v Xo9 vv2.

In. each case, either y : v... or y v a, where v v We enumerate the
possible values for 6 and z, and the corresponding satisfiable FBRC conditions.

’2/1

z2t

"c22tuy, where Z "21"i722,

22 {}*V*
tzuy

uy

uzY

satisfiable condition

(BR2) if y :, v
(BR3) if y v...

(BR5) if y : v
(BR6) if y v...

(BRS) if y v
(BR9) ify v...
(BRll) ifyvt
(BR12) ifyv...

We ha,ve shown that for every way in which G could fail to be an (re, n) BRC
grammar, some corresponding (re, n) FBRC condition would be satisfiable.
Therefore, since G is an (m, n) FBRC grammar, G is an (m, n) BRC grammar.

(c) (m, n) FBRC
_

(m, n) BRC, (m, n => 0) follows from part (b). From Lemma
4.1, Theorem 4.3, and part (a), it follows that for any (m, n) BRC grammar G,
(m>= O, n > O) L(G)- {2} is generated by an (m, n) FBRC grammar. This com-
pletes the assertion.

6. Concluding remarks. The results we have presented (and especially the
transformations) are particularly relevant for comparisons of methods of parsing
deterministic context-free languages. A variety of arguments have been advanced
for and against various parsing methods on the grounds that the methods do or
do not admit 2-rules or do or do not work for a sufficiently large class of grammars,
or do or do not require large amounts of storage for the parsing tables. If trans-
formations between grammar classes which make minimal modifications and
which preserve the desired grammatical properties are regarded as additional
steps in constructing the parsers, then many of these arguments become vacuous.
Furthermore, in comparing parsing methods, one must be careful which parameters

254 SUSAN L. GRAHAM

are being measured. An optimized version of the transformation of 4 to eliminate
2-rules may still yield a transformed grammar that is substantially larger than
the original (primarily because of the G1 to G, transformations). This may suggest
that).-rules are a good thing. However, the derivations in the transformed grammar
may be substantially shorter because the steps involving 2-rules have been
eliminated.

It should be clear that in any computer implementation of transformations
such as those presented in this paper, computational efficiency can be achieved
in a variety of ways. For example, incremental versions of the transformations
can be designed to produce only reduced grammars. However, one of the ob-
servations to be made from the two proofs of Lemma 3.3 is that it is possible to
devise transformations which are too incremental and that a careful analysis of
the underlying reasons for changing a grammar may yield techniques which are
faster to carry out and which yield smaller grammars.

Acknowledgment. The author is very grateful to Michael Hammer of MIT
for his helpful comments, which contributed significantly to the clarity of the
presentation.

REFERENCES

[1] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Compiling, vols. and II,
Prentice-Hall, Englewood Cliffs, N.J., 1973.

[2] R. W. FLOYD, Bounded context syntactic analysis, Comm. ACM, 7 (1964), pp. 62-66.
[3] S. L. GRAHAM, Precedence languages and bounded right context languages, CS 223, Computer

Science Dept., Stanford Univ., Stanford, Calif., 1971.
[4] --, Extendedprecedence languages and grammars, in preparation.
[5] --., Grammatical transformations for bottom-up parsing, in preparation.
[6] M. A. HARRISON AND I. M. HAVEL, On theparsing of deterministic languages, J. Assoc. Comput.

Mach., 21 (1974).
[7] D. E. KNUTI-I, On the translation oflanguagesfrom left to right, Information and Control, 8 (1965),

pp. 607-639.
[8] D. LEHMANN, LR(k) grammars and deterministic languages, Israel J. Math., 10 (1971), pp. 526-530.
[9] D. J. ROSENKRANTZ AND R. E. STEARNS, Properties of deterministic top-down grammars, Infor-

mation and Control, (1970), pp. 226-256.
[! 0] NIKLAUS WIRTH AND HELMUT WEBER, EULER." A generalization of ALGOL and its formal

definition" Parts I and H, Comm. ACM, 9 (1966), pp. 13-23, pp. 89-99.

SIAM J.
Vol. 3, No. 4, December 1974

THE NUMBER OF I’S IN BINARY INTEGERS"
BOUNDS AND EXTREMAL PROPERTIES*

M. D. MclLROY"

Abstract. Closed formulas provide tight bounds for G(n), the total number of l’s in the binary
representations of integers less than n. This function satisfies an extremal recurrence, which gives the
maximum cost of a process that creates a set of n objects by repeatedly merging pairs of smaller sets,
starting from n singletons, incurring a cost equal to the size of the smaller set at each merger:

G(n)-- max [i+ G(i) + G(n i)],
<_i<_.n]2

where G(1) 0. The set of pairs (i, n i) at which the maximum is attained has an interesting structure.

Key words, binary numbers, extremal recurrences, set merging

1. Basle recurrences. Let G(n) be the total number of l’s in the list of integers
0, 1, 2, ..., n expressed in binary notation. Evidently

(1) G(2m) -m2=2 m=0,1

since the list then consists of all 2" m-bit patterns of O’s and l’s, among which half
the bits are l’s. Given

(2) G(1) 0,

the definition of G(n) may be extended to n 0, 1, by any of these recurrences.

(3) G(2" + i) G(2") + G(i) + i, 0 <_ <= 2m, m O, 1,...,

(4a) G(2n) n + 2G(n), n 0, 1,

G(2n + 1)= n + G(n) + G(n + 1),

G(n) n/2J + G([n/2]) + G(n/2]),

G(2" + i)= i(m + 1)+ G(2"-i), 0=<i=<2",

(4b)

()

(6)

n 0,1,.-.,

n 0,1,...,

(Some cases of(3) or (4) involving G(0) are redundant; they are so written to simplify
later calculations.) The recurrence (3) derives from the fact that the binary repre-
sentation of 2" + i, 0 =< < 2", is just the m-bit representation of prefixed by a 1.

To derive (4b), split the set {il0 < < 2n + 1} into an odd part {2i + 1]0
=< < n} and an even part {2il0 -<_ =< n}. The odd part has n final l’s plus the
number of l’s in {2il0 =< < n}, which is just G(n). Similarly, the even part contains
G(n + 1) l’s, whence the total number of l’s is n + G(n) + G(n + 1). Recursion
(4a) may be derived similarly; (5) merely combines (4a) and (4b).

Received by the editor September 27, 1973, and in revised form April 2, 1974.

" Bell Laboratories, Murray Hill, New Jersey 07974.
Except for a factor of 2, (4) occurs in another context in [1].

255

256 M.D. McILROY

Recursion (6) was pointed out by a referee. It follows from observing that the
numbers 2 + and 2" are (m + 1)-bit l’s complements and that exactly
/such complementary pairs make up the set {hi2" < n _< 2" + i- 1}.

2. Bounds. The following theorem lends precision to the result G(n)
1/2n log2 n + O(n), which was announced by Bellman and Shapiro [2]. The

deviation of G(n) from these bounds is shown in Fig. 1.

0 32 64 128

-I0

-2o

FIG. 1. The deviation of G(n) from its bounds. The curve represents G(n) 1/2n log n" the straight line is

log: 11/4.) 1/2. log ,,.

THEOREM 1. Thefunction G(n) defined above satisfies

(7) [1/2nlog2 (1/4n) =< G(n) <= [1/2n log2 nJ, n 0, 1,--.,

and each bound is tight for infinitely many values of n. 2

The upper bound in (7) is evidently true for n 0. Relation (1) G(2m) -m2"2

shows that the bound is valid and tight when n is a power of 2. Assuming the
upper bound holds up to n 2", we have by (3) and (1),

We take 0 log 0 to be 0.

THE NUMBER OF I’S IN BINARY INTEGERS 257

G(n + i)= G(2m) 4- G(i)+ (0 =< =< n 2")
=< 1/2m2" 4- 1/2i log2i +
--1/2nlog2n 4-1/2ilog2i4-
-<(n 4- i) log2(n 4- i) (0 =< i< n 2m).

The last inequality follows by considering the function

1/2(n+x) log2(n+x)-(1/2nlog2n+1/2xlog2x +x),

which takes on the value 0 at x 0 and x n, and has a negative second derivative
with respect to x throughout the open interval (0, n). Thus 1/2(n + x)log2 (n + x)
exceeds 1/2n log: n + 1/2x log: x + x throughout that interval. The upper bound in
(7) follows by induction on powers of 2.

The lower bound in (7) is evidently true for n 0 and n 1. Suppose that a
bound of the form

(8) G(n) 1/2n log2 n cn

is true for some c > 0 for all n __< 2m. Then by (3) and (1),

G(n + i)= G(2m) + G(i)+ (0=< i=<n 2")
> gm2 + 1/2i log2 + i- ci

1/2n log2 n + 1/2ilog2i + i- ci

The desired result (8) follows by induction on m, provided that the following in-
equality holds for 0 <__ < 2

1/2nlog2n +1/2ilog2i+ ci 1/2(n + i) log2(n + i) c(n + i).

Replace by xn and simplify to obtain another relation whose truth would imply
the result"

1/2xlog2x + x =>1/2(1 +x) log2(1 + x)- c, 0 =<x =< 1.

Since both sides are continuous in x on [0, 1], c can be chosen sufficiently large
that the inequality is satisfied throughout the interval. By elementary calculus we
find the smallest such c to be 1/2 log2

4
3, whence

G(n) >= 1/2n log2 n 1/2n log2 -.
Since G(n) takes on only integer values, we may round the right side up to the
nearest integer, thus establishing the lower bound in (7).

The lower bound in (7) is tight for all n such that 13n 2kl 1, k 0, 1, ..-,
as may be verified directly for k 0 and proved as follows for positive even k. A

+similar argument holds for odd k. Let k 2m + 2, so that v,, (22m 2 1)
22" + 22m 2 4- 4- is an integer satisfying 3v" 2k -1. Since v" 2"

+ Vm-1, we have by induction on (3) together with (1),

G(v.,) G(22m) 4- G(V -1 4- V -1

"-1 m (2m+2’2k22k + G(Vo)+ Z v, =k=l k=0

258 M.D. McILROY

For comparison, calculate

1/2V log2 (_Vm) 1/2 2m+ (22m+22 2 1) log2 1))

12 -(22m+2 1)[2m + log2 (1 2-2m-2)]

m
----(22m+2 1) +

3
2 -2m-2 (-- 1)

6 log2 = j

1 2 -2m-2
(Vm)+ S,

6 log 2

2- 2(m+ 1)(j- 1)

where S is the sum of the alternating series. For all m >__ 0, 1 < S =< 0. It follows
that

0 . a(Vm)- 1/2V log2 (1/4"m) <
6 log 2

Since 1/(6 log 2)= .2404... is less than 1, and G(vm) is an integer, G(vm) must in
fact equal [1/2v log2 (-v,,)].

3. A set merging process. In various graph-theoretic algorithms, the following
merging process occurs [3]. Start with n sets, each containing exactly one member.
At step i, 1, 2, ..., n 1, merge any two sets. A cost equal to the size of the
smaller set is incurred at each step. The maximum cost G(n) that can be incurred in
the whole process is defined by

(9) (1)=0, ((n)= max [i+ G(i)+ ((n-i)], n=2,3,....
<i<n/2

It turns out that G(n) is the same as G(n) for n 1, 2,.... Given this fact,
and noting that recurrences (3) and (4) both look like (9) with the max operation
removed, we can read off two different cost-maximizing policies"

(a) Merge a set whose size is a power of 2 with a set of equal or smaller size.
(b) Merge two sets whose size differs by at most one.

Each of these policies is a special case of the general policy set forth in Theorem 2
below.

4. Proof of extremality. To prove that the extremal property (9) is possessed
by G(n), consider the function

(10) F(p, q)= G(p + q)- [p + G(p) + G(q)], 0 _<_ p =< q.

F(p, q) is the "deficiency" by which the cost of a set of p + q elements would fall
short of G(p + q) if that set were created by merging sets of size p and q created by
extremal routes whose costs were G(p) and G(q). A recurrence for F(p, q) follows
from substituting (5) into (10).

THE NUMBER OF I’S IN BINARY INTEGERS 259

-{p + Lp/2J + G(Lp/2]) + G(p/2]) + Lq/2J + G(Lq/21) + G([q/2])}

G([p+ q.l- {[p/2] + G([p/2]) + G([q/2])}
\L 2 I/

+ G([pl2])+ G(Lql2I)}

+ [p/2],- p Lq/2J}
The last bracketed quantity is 1 when both p and q are odd and is 0 otherwise, so
can be more compactly written as pq (mod 2). Unless p is even and q is odd, the
middle line is exactly F(Lp/2], [q/2]) and the next is F([p/2], Lq/2J). But in that
special case exchange the places of

G(P +2 q]) and G([P +2 q])
to see the same thing. Thus

(1 l a) F(p, q)= F(Lp/2J, [q/Z]) + F([p/2], [q/ZJ) + (pq (mod 2)), 0 <_ p < q.

The domain must be restricted to 0 __< p < q lest F([p/2], Lq/2j) go outside the
original domain of (10) when p q. The boundary conditions

(llb) F(p,p) F(p,p + 1) F(0, q) 0, p,q 0, 1,’.’,

follow from the facts that

G(2p + 1)= p + G(p) + G(p + 1), G(2p) p + 2G(p), G(1) G(O) O.

We are now in a position to justify the assertion that G(n) is indeed the largest cost
that can be incurred in the merging problem, or that G(n) satisfies (9). The proof by
induction on G assumes that G satisfies (9)_up to n 1. Then

(12) max [i + G(i)+ G(n i)] G(n)- min [G(n)- i- G(i)- G(n i)]
<i<n/2

G(n) min F t,i, n i)

Now by (11), F is obviously nonnegative, and by (11 b), F does take on the value
zero at (i, i) or (i, + 1), whence expression (12) is exactly G(n).

5. Extremal policies. The set of maximum cost merges is the set of pairs
(p,q) with 0 =< p __< q such that G(p + q) p + G(p) + G(q), or equivalently,

These conditions are not mutually independent. An independent set would be F(p, p) F(0, 1)
0.

260 M.D. McILROY

such that F(p, q) 0. When p and q are both odd and unequal, (1 a) shows F(p, q)
to be nonzero. For other (p, q) we must chase the recurrence down to an unequal odd
pair to show that F(p, q) =/= O, or else chase all paths to the boundary (11 b) without
encountering such a pair to show that F(p, q) O.

It is easy to verify that as long as the first member of the pair remains even,
n-fold application of (lla) visits only the points (p/2i, [q/2i]) and (p/2, [q/2i]),

1, 2,..., n. Now suppose that p and q may be represented by p 2"po and
q 2bqo, where a >__ b and Po and qo are both odd. Then the recurrence cannot
reach an odd pair until the ath iteration, where we will have typical terms
F(po, [q/2"J) and F(po, [q/2a]). If [q/2"J is odd, then for F(p, q) to be zero we must
have Lq/2J po. If [q/2OJ is even, then [q/2"] is odd, since otherwise qo would
have been even, and hence F(p, q) is nonzero. Similarly if a < b, we find that F(p, q)
is nonzero unless [p/2bJ qo 1. In other words, F(p, q) is zero if and only if

p=2po and qe{p,p+ 1,.--,p+2a- 1}, a=O, 1,2,..., poodd,

or

q 2bqo and p 6 {q 2b -F 1,..-, q 1, q}, b 0, 1, 2,..., qo odd,
or

p=0.

Stated still another way for nonzero p and q, this criterion is Theorem 2.
THEOREM 2. Let a set of n objects be created by n- merges of pairs of sets

startingfrom n singletons. Ifa cost equal to the size ofthe smaller ofthe pair is incurred
at each step, then the maximal total costfor the process is G(n) and is achieved ifand
only iffor every merged pair, the sizes of the two sets differ by less than the largest
power of2 that divides one of the two sizes.

The locus of maximal cost merges makes the interesting recursive pattern
shown in Fig. 2.

.64

.;.;

ll,loo,;

:"’"",;:.::.:.,.: :32 P

::.:
.:..’2.:

..0::.:...: ,:
8 16 3 64

Cl

THE NUMBER OF l’S IN BINARY INTEGERS 261

6. Related work. Hopcroft and Ullman have a "practically linear" algorithm
for performing the bookkeeping connected with the set-merging process 4].
Functions or extremal recurrences similar to G(n) have been studied in 5]-8].

REFERENCES

E. N. GILBERa’, Games of identification and convergence, SIAM,Rev., 4 (1962), pp. 16-24.
[2 R. BELLMAN AND H. N. SHAPIRO, On aproblem in additive number theory, Ann. of Math., 49 (1948),

pp. 333-340.
[3] D. E. KyurI-l, Complexity analysis of equivalence algorithms, Unpublished notes, Mathematisk

Institutt, Blindern, Norway, 1972.
[4] J. E. HOPCROFT AND J. D. ULLMAN, Set merging algorithms, this Journal, 2 (1973), pp. 294-303.
[5] M. L. FREDMAN AND D. E. KNUTH, Recurrences based on minimization, CS-72-248, Dept. of

Computer Sci., Stanford Univ., Stanford, Calif., 1971.
[61 E. WONG, A linear search problem, SIAM Rev., 6 (1964), pp. 168-174.
7] R. MORRIS, Some theorems on sorting, SIAM J. Appl. Math., 17 (1967), pp. 1-6.
I8] L. CARLITZ, A sorting function, Duke Math. J., 38 (1971), pp. 561-568.

SIAM J. COMPUT.
Vol. 3, No. 4, December 1974

COMPUTATIONALLY RELATED PROBLEMS*

SARTAJ SAHNI"

Abstract. We look at several problems from areas such as network flows, game theory, artificial
intelligence, graph theory, integer programming and nonlinear programming and show that they are
related in that any one of these problems is solvable in polynomial time iff all the others are, tbo. At
present, no polynomial time algorithm for these problems is known. These problems extend the
equivalence class of problems known as P-Complete. The problem of deciding whether the class of
languages accepted by polynomial time nondeterministic Turing machines is the same as that accepted
by polynomial time deterministic Turing machines is related to P-Complete problems in that these two
classes of languages are the same iff each P-Complete problem has a polynomial deterministic solution.
In view of this, it appears very likely that this equivalence class defines a class of problems that cannot
be solved in deterministic polynomial time.

Key words, complexity, polynomial reducibility, deterministic and nondeterministic algorithms,
network flows, game theory, optimization, AND/OR graphs

1. Introduction. Cook [3 showed that determining whether the class of
languages accepted by nondeterministic Turing machines operating in polynomial
time was the same as that accepted by deterministic polynomial time bounded
Turing machines was as hard as deciding if there was a deterministic polynomial
algorithm for the satisfiability problem of propositional calculas (actually, Cook
showed that there was a polynomial algorithm for satisfiability iff the determin-
istic and nondeterministic polynomial time languages were the same). This problem
about equivalence of the two classes of languages is a long-standing open problem
from complexity theory. Intuitively, it seems that the two classes are not the same.
Consequently there may be no polynomial algorithm for the satisfiability problem.
Further empirical evidence that the two classes may not be the same was provided
by Karp in [5, where he showed that many other problems like the traveling sales-
man problem, finding the maximum clique ofa graph, minimal colorings of graphs,
minimal set covers, etc., had polynomial algorithms iff the two classes of languages
were the same. In view of this relationship amongst all these problems, we can say
that there is strong evidence to believe that there is no polynomial algorithm for
any of the problems given in Karp [5. However, no formal proof of this (if this is
true) is available at this time.

The equivalence class of problems having the property that each member of
the class has a polynomial algorithm iff nondeterministic and deterministic poly-
nomial languages are the same is known as P-Complete. In [5, Karp presents 21
members of this class. The purpose of this paper is to extend the class of known
P-Complete problems. Specifically, we show that several important problems from

Received by the editors July 18, 1973, and in revised form April 6, 1974. The research reported
here is part of the author’s Ph.D. dissertation, Cornell University. An earlier version of these results
was presented at the 1972 IEEE Annual Conference on Switching and Automata Theory. This research
was supported in part by the National Science Foundation under Grant GJ-33169.

" Department of Comlter Science, Cornell University, Ithaca, New York. Now at Department
of Computer, Information, and Control Sciences, University of Minnesota, Minneapolis, Minnesota
55455.

262

COMPUTATIONALLY RELATED PROBLEMS 263

areas such as artificial intelligence, game theory, graph theory, network flows and
integer optimization are P-Complete. We also introduce the concept of P-Hard.

The rest of this section will be devoted to definitions and establishing our
notation. In 2 the new members of the classes P-Complete and P-Hard are
presented.

1.1. Definitions. As our computational model we shall use Turing machines.
(See Hopcroft and Ullman I4 for a standard treatment of this model.) The reader
unfamiliar with deterministic and nondeterministic polynomial time computa-
tions should see Karp I5].

DEFINITION 1. P (NP) is the class of languages recognizable by deterministic
(nondeterministic) polynomial time bounded one-tape Turing machines.

Open problem. "Is P NP?" We may rephrase this as, "Is there a determin-
istic polynomial algorithm for all languages in NP?" Call this Problem P1.

DEFINITION 2.1 A problem is a total function f: * 2r*, which takes each
finite string to a nonempty subset of strings. (Informally, the finite string represents
an encoding of the input or data and f maps this onto a solution set. Thus, for
language recognition problems, f:Y* (0, 1), where f 0 iff the input string is
not in the language.)

We consider algorithms which, given x6 Z*, produce some y6f(x). The
computing time of the algorithm will be measured as a function of the length of
x (Ixl). (All algorithms will be deterministic unless otherwise stated.)

DEFINITION 3. A problem L will be said to be P-Reducible to a problem M
(written L M) iff a polynomial algorithm for M implies a polynomial algorithm
for L. That is, from a deterministic polynomial algorithm for M we can construct a
deterministic polynomial algorithm for L.

DEFINITION 4. A problem L is P-Hard iff a polynomial algorithm for L
implies P NP.

DEFINITION 5. Two problems L and M are P-Equivalent iff L a M and
MeaL.

Clearly, P-Reducible is a transitive relation and P-Equivalent is an equiva-
lence relation.

DEFINITION 6. P-Complete (PC) is the equivalence class of P-Equivalent
problems having a polynomial algorithm iff P NP.

Our definition of P-Complete differs from that used by Karp [5]. However,
it can easily be shown that any problem which is polynomial-Complete under his
definition is P-Complete. The reverse, however, may not be true. (No proof of the
equivalence or nonequivalence of the two definitions is known.) Note that all
P-Complete problems are also P-Hard. In some cases, we may only be able to show
the relation P-Hard rather than the stronger P-Complete relation. We shall often
write L P1 when we mean "if P NP, then L is polynomial solvable" and
P1 L when we mean "if L is polynomial solvable, then P NP". No ambiguity
should arise from this double use of the symbol .

The author is grateful to an anonymous referee for suggesting this definition of a problem which
encompasses both language recognition and optimization problems. Z is the tape alphabet of the
Turing machine and Y* is the set of all finite length strings or words from the alphabet Z.

264 SARTAJ SAHNI

There are several ways to show that a problem L is P-Complete. For instance,
one could show L to be P-Equivalent to M, where M is a problem already known
to be P-Complete, or show that L has a polynomial algorithm iff P NP, etc.
Most of the proofs in the next section will adopt the following approach: (i) show
that "if P NP, then L" is polynomial solvable, i.e., L 0t (P NP), and (ii) show
M 0t L, where M is a problem known to be P-Complete. M will usually be the
satisfiability problem of propositional calculus (see Karp [5] for a formal definition
of this problem).

2. P-Complete and P-Hard problems. In this section we shall show that
several frequently encountered problems in various areas such as network flows,
game theory, graph theory, nonlinear and linear optimization are either P-
Complete or at least P-Hard. The reductions are easily seen to be effective. The
polynomial factors involved in the reduction are small (usually a constant or a
polynomial of degree 1).

2.1. Some known P-Complete problems. To prove some of the reductions, we
shall make use ofsome known members ofPC. A briefdescription ofthese members
is given below. (A more exhaustive list may be found in Karp [5].)

(i) Propositional calculus.
(a) Satisfiability. Given a formula from the propositional calculus, in

conjunctive normal form (CNF), is there an assignment of truth values
for which it is "true"?

(b) Satisfiability with exactly 3 literals per clause. This is the same as (a),
except that each clause of the formula now has exactly 3 literals.

(c) Tautology. Given a formula, from the propositional calculus, in dis-
junctive normal form (DNF), does it have the value "true" for all pos-
sible assignments of truth values.

(ii) Sum of subsets of integers. Given a multiset S (s l, ..., st) of positive
integers and a positive integer M, does there exist a submultiset of S that sums to
M? (This problem is called the Knapsack problem in [5]. However, here we shall
denote by "Knapsack problem" a similar integer optimization problem.) Note
that a multiset is a collection of elements that may not necessarily be distinct.

(iii) Maximum independent set. Let G be a graph with vertices v 1, v2, ..., v,.
A set of vertices is independent if no two members of the set are adjacent in G. A
maximum independent set is an independent set that has a maximum number of
vertices.

(iv) Directed Hamiltonian cycle. Given a directed graph G, does it have a
cycle that includes each vertex exactly once?

THEOREM 2.1. Thefollowing problems are in PC
(i) Satisfiability, satisfiability with exactly three literals per clause, tautology;
(ii) Sum of subsets of integers;

(iii) Maximum independent set ofa graph;
(iv) Directed Hamiltonian cycle.
Proof (i)is proved in Cook [3]. The rest are proved in Karp
Cook 3] actually shows that satisfiability with at most three literals per

clause is P-Complete. From this result one may trivially show that satisfiability
with exactly three literals per clause is P-Complete. We show how to convert a

COMPUTATIONALLY RELATED PROBLEMS 265

two-literal clause into an equivalent pair of three-literal clauses. Let (Xl + X2) be
the clause and y a variable not occurring in the formula. Then (xl + x2 + y)
/x (xl + x2 + .) is satisfiable iff the two-literal clause is. All two-literal clauses may
be replaced by pairs of three-literal clauses as above. This at most doubles the
number of clauses. Clauses with only one literal can be deleted, the literal determin-
ing the truth assignment to that variable.

2.2. Integer network flows. We define the following network problems.
Problem N(i). Network flows with multipliers. Let G be a directed graph with

vertices 1, 2, U1, Vn and edges (arcs) el, e2, %. Let w-(v) be the set of
arcs directed into vertex v and w +(v) those arcs directed away from v.

G will be said to denote a network with multipliers if:
(a) the source 31 of the network has no incoming arcs, i.e., w-(l)
(b) the sink 2 has no outgoing arcs, i.e., w +(2) ;
(c) to every vertex v (excluding the source and sink) there corresponds an

integer h > 0, called its multiplier.
(d) to each edge ei there corresponds an interval [ai, bi]

Conditions (a)-(d) are said to define a transportation network.
We are required to find a flow vector, with integer entries, (I)- (bl, b2,

.., qS,,) such that the following conditions hold.
Condition 1. a <= dpi < bi;
Condition 2. h(v) iw-v) dp iw+v) diDi for all v V(G), v =/: v =/=
Condition 3. iw-s2) 49i is maximized.
In what follows, we assume a O.
Problem N(ii). Multicommodity network flows. The transportation network

is as above, but now h(v) for all v in V(G). We have, however, several different
commodities c l, c2, ".’, c,, and some arcs may be labeled, i.e., they can carry
only certain commodities. Each arc is assigned a capacity, and we wish to know
whether a flow R (rl, r2, rn), where r is the quantity of the ith commodity,
is feasible in the network.

Problem N(iii). Integer flows with homologous arcs. The transportation
network remains the same. Also, h(v)= and there is only one commodity.
Certain arcs are paired, and we require that if arcs i, j are paired, then
We wish to know if a flow of at least F is feasible in the network.

Problem N(iv). Integerflows with bundles. The arcs in the network are divided
into sets I1, ..., I (the sets may overlap). Each set is called a bundle, and with
each bundle is associated a capacity Ci. We wish to know if a flow _>_ F is feasible
in the network"

Z)i Cj, <= j <= k
i6lj

and

h(v) V v e V(G).

THEOREM 2.2. Problems N(i)-N(iv) are in PC.
Proof (a) N(i), N(ii), N(iii), N(iv) P 1. The nondeterministic turing machine

(NDTM) just guesses the flows in each arc and then verifies Conditions and 2.
In addition, it does the following:

266 SARTAJ SAHNI

(i) for N(ii) it verifies that the resultant flow is >= R;
(ii) for N(iii) the "homologous conditions" are checked and iw-{_,/bi > F

verified;
(iii) for N(iv) the bundle restrictions are checked and iw-2)qSi > F

verified.
If in N(i) we replace the max iw-2)4i requirement to"

(2.2.1) T" ,>__F,
iew- (2)

then from the above it .follows that Ta P l. 2 To see N(i)a T, we note that if the
length of the input on a Turing machine’s tape is n, then the largest number it can
represent is c", for some constant c which depends only on the Turing machine.
Hence the maximum capacity of an arc is bounded by c" and so max iw-{2) qSi
_< k", for some constant k. Now, assume there is a polynomial [p(n)] algorithm for
T. Then, using the method of bisection, we can determine max i,w-2)qSi in at
most log2 kn= n log2 k applications of T. This, therefore, gives a polynomial
algorithm for N(i). Therefore N(i) a T a P1, and from the transitivity of a we
conclude N(i)ot P1. Clearly, this proof technique can be used to show N(iii) and
N(iv) to be complete when they are changed to maximization problems.

(b) We now show the reduction for N(i)-N(iv), in the other direction.
(i) Sum of subsets of integers a N(i). We construct a network flow problem

of type N(i) such that max iw-2)4i M iff there is a submultiset of S
{sl, "", st} that sums to M.

Source sink

i 2

FIG. 2.2.1. Construction for sum ofsubsets N(i)

Consider the construction of Fig. 2.2.1 with h si, < r. Clearly

max Z qSi=M
iew (2)

iff some submultiset of S sums to M.
(ii) Tautology N(ii). Suppose that the formula P in DNF has n variables

al, a2, "-’, a,. We shall construct a multicommodity network with n commodities

Recall that P1 was defined in 1.2 to be the decision problem" is NP P?

COMPUTATIONALLY RELATED PROBLEMS 267

C1, C2, C such that the flow R(1, ..-, 1) is feasible iff P is not a tautology. The
network of Fig. 2.2.2 realizes this.

Discussion.
[A] This section of the" network ensures that there is a flow through only one

of the nodes a or i. In terms of the formula A, a flow through a means a truth
assignment of to ai while a flow through fii means an assignment of 0 to ai.

[B] For each clause (Ki) in P we have a section of the form

a
2

a
3

If there arej literals in the clause, then arc (,/3) is assigned a capacity ofj 1.
This requires that the truth assignments be such that clause k is false (as at least
one term in it is false). Node/ is where the "multicommodity" property of the
network is used. Here the flow through is correctly separated into its components,
i.e., we are able to get back the truth values of the variables. The components for
each flow are connected in series as in Fig. 2.2.2.

We now want to know if a flow R (1, 1, ..., 1) is feasible. It is easy to see
that such a flow is possible iff there is a truth assignment to a l, "", a, for which
each clause is false, i.e., iff P is not a tautology.

(iii) Tautology a N(iii). The construction is very similar to that for multi-
commodity network flows. The network is as in Fig. 2.2.3. Homologous arcs are
marked with the same subscripted Greek letter.

The arcs (,/1) have a capacity that is one less than the number of terms in the
clause, thereby ensuring that truth assignments that would make the preceding
clause "true" cannot occur. The "homologous conditions" permit the separation of
the flow at/ into the original "truth assignments".

The maximum capacity of the sink is n. Hence there is a flow >= n iff there is a
consistent assignment of truth values to al, "’, a, such that no clause is "true",
and hence P is not a tautology.

(iv) Maximum independent set a N(iv). 3 Let G(V, E) be an undirected graph
for which we want to determine the maximum independent set.

The author is grateful to S. Even for pointing out an error in the original proofand for suggesting
the correction.

268 SARTAJ SAHNI

COMPUTATIONALLY RELATED PROBLEMS 269

270 SARTAJ SAHNI

Construct a network as below"
Let 1, /)1, "’", /)n, 2 be the nodes of the network n]V[. From the source

node, draw an arc of capacity to each of the nodes vi, < < n. From each node
vi, draw an arc ai to the sink node g2. For each edge in G, define a bundle (ag, .az) if
this edge joins vertices v and vj in G. These are the only bundles in the network.
Each bundle is assigned a capacity 1. This ensures that if vertex v is chosen in the
maximum independent set (i.e., if there is a nonzero flow through it), then there is no
flow through vertices adjacent to v (i.e., adjacent vertices are not chosen).

Now there is a flow >__F iff there is an independent set of cardinality >__F.
We solve the flow problem for F n, n 1, ..., 1, and the first F for which we
get a feasible flow defines a maximum independent set.

v
4

Example 2.2.1.

V
2

g3

V

Source

Sl s2

v4

G(V,E) Network

FIG. 2.2.4. Examplefor maximum independent set ot N(iv)

The largest k for which there is a feasible flow is k 2, through vertices V and
V2. Thus the maximum independent set of G is of size 2, and one such set is
{V1, V2}. The bundles are: (a, a4), (a2, a3), (a2, a4) and (a3, a4).

It is interesting to note that all these problems are related to a similar, poly-
nomial time, flow problem (see [1]).

2.3. Graph theory.
Problem G1. Minimal equivalent graph of a digraph. Given a directed graph

G(V, E), we wish to remove as many edges from G as possible, getting a graph G1
such that"
(2.3. la) InG, thereisapathfromvitovjiffthereisapathinG fromvitovj;
(2.3.1b) E(G1)

E(G) (E(G) is the set of edges of G), i.e., we want the

smallest subset of E(G) such that the transitive closure of G
transitive closure of G.

THEOREM 2.3.1. G1 is in PC.
Proof (a) G1 P1, Let n number of vertices in G IV(G)[then

[E(G)[=< n(n 1) < n2.

We can easily construct an NDTM, T, which given G and an integer k, determines
if there is a subset of k edges satisfying (2.3.1a,b). T can be constructed so as to
work in O(n3) time. If NP P, then there is a deterministic algorithm that does

COMPUTATIONALLY RELATED PROBLEMS 271

this in p(n) time. We find the smallest k =< rt2 for which such a subset exists. After
determining k, the k edges can be determined as below.

Define a sequence E ofmaximum length IE(G)I. Set i if edge is among the
k edges and ; 0 otherwise.

Suppose it is already known that E (il, .., ij) is a correct ’partial" choice;
then we ask if E(ij+ 1) is.

If yes, then set E (il, i2,"’, i.i, 1).
If no, then set E (i, i2,’’’, ij, 0).
Do this forj 0, 1, 2,..-,]E] 1.
(b) Directed Hamilton cycle 0 G1.

Note. (i) If the directed graph G has a Hamilton cycle, then its transitive closure
is the "complete directed graph" on V(G)[points. The smallest graph with
this transitive closure is the cycle on IV(G)[points. Thus if there is a
Hamilton cycle, then this cycle forms the minimal equivalent graph of G.

(ii) Conversely, if the minimal equivalent graph is a cycle on IV(G)] points,
then G has a Hamilton cycle.

Therefore G has a Hamiltonian cycle iff the minimal equivalent graph of G is a
Hamiltonian cycle.

Problem G2. Optimal solution to AND/OR graphs. This is a problem frequently
encountered in artificial intelligence;see [2, [9] and [10]. We are given a directed
graph G(V, E). Each node of G represents a subproblem. In order to solve this
subproblem, one might have to solve either all of its successors or only one of them.
In the former case the node will be denoted an AND node, while in the latter case
it is an OR node. The arcs are weighted, and the weights represent the cost asso-
ciated with solving the parent node given that the successor (or son) node has been
solved. There is one special node, S, which has no incoming arcs. This node repre-
sents the total problem being solved. The problem then is to find a minimum
solution to S.

As an example, consider the directed graph of Fig. 2.3.1. The problem to be
solved is P1. To do this, one may solve either nodes 12, 13 or P7, as P1 is an OR
node. The cost incurred is then either 2, 2 or 8 (i.e., cost in addition to that of solving
one of P2, P3 or Pv). To solve P2, both P4 and P5 have to be solved, as 19 2 is an
AND node. The total cost to do this is 2. To solve P3, we may solve either P5 or

P6- The minimum cost to do this is 1. P7 is free. In this example, then, the optimal

AND node

FIG. 2.3.1. AND/OR graph

272 SARTAJ SAHNI

way to solve P1 is first solve P6, then P3 and finally P1. The total cost for this
solution is 3.

TrEORFM 2.3.2. G2 PC.
Proof (a) G2 a (P NP). The proof for this part is very similar to the part (a)

of the proofs of each of Theorems 2.3.1 and 2.5.1 (see 2.5).
(b) Satisfiability a G2. We show how to transform a formula P in CNF into an

AND/OR graph such that the AND/OR graph so obtained has a certain minimum
cost solution iff P is satisfiable.

Let P= A C, C= V lj,
i=1 j=l

where the lj’s are literals and the variables of P, V(P) are Xl, X2, ")n" The
AND/OR graph will then have nodes as follows:

1. There is a special node, S, with no incoming arcs. This node represents the
problem to be solved.

2. S is an AND node with descendent nodes P, x 1, x2, -.., x,.
3. Each node xi represents the corresponding variable xi in the formula P.

Each x is an OR node with two descendents denoted Tx and Fx, respectively. If
Tx is solved, then this will correspond to assigning a truth value of "true" to the
variable x. Solving node Fxi will then correspond to assigning a truth value of
"false" to x.

4. The node P represents the formula P, and is an AND node. It has k de-
scendents C1, C2, "", Ck. Node C corresponds to the clause Ci in the formula P.
The nodes C are OR nodes.

5. Each node of type Tx or Fx has exactly one descendent node which is
terminal (i.e., has no edges leaving it). These terminal nodes shall be denoted
l) 1) 2 l) 2

To complete the construction of the AND/OR, graph the following edges and
costs are added:

1. From each node C an edge (C, Txj) is added if xj occurs in clause C.
An edge (C, Fxj) is added if ffj occurs in the clause C. This is done for all variables

xj appearing in the clause C. Ci is designated an OR node.
2. Edges from nodes of type Tx or Fx to their respective terminal nodes are

assigned a weight or cost 1.
3. All other edges have a cost 0.
In order to solve S, each of the nodes P, x 1, x2,..- x, must be solved.

Solving nodes x 1, x2,’", x, costs n. To solve P, we must solve all the nodes
C, C2, ..., Ck. The cost of a node C is at most 1. However, if one of its descendent
nodes was solved while solving the nodes x, x2, .--, x,, then the additional cost
to solve C is 0, as the edges to its descendent nodes have cost 0 and one of its
descendents has already been solved. That is, a node C can be solved at no cost if
one of the literals occurring in the clause C has been assigned a value "true."
From this it follows that the entire graph (i.e., node S) can be solved at a cost n if
there is some assignment of truth values to the x’s such that at least one literal in
each clause is true under that assignment, i.e, if the formula P is satisfiable. If P
is not satisfiable, then the cost is > n.

COMPUTATIONALLY RELATED PROBLEMS 273

We have now shown how to construct an AND/OR graph from a formula P
such that the AND/OR graph so constructed has a solution of cost n iff P is
satisfiable. Otherwise the cost is >n. Hence from the minimum solution to the
AND/OR graph, one can determine if P is satisfiable. The construction clearly
takes only polynomial time. This completes the proof.

Example 2.3.1. Consider

P (x1 ’it- x2 + x3)(l - 2 -+- 3)(1 + x2), V(P)-- X1,X2,X3, rl 3.

Figure 2.3.2 shows the AND/OR graph obtained by applying the transformation of
Theorem 2.3.2.

The nodes Tx 1, Tx2, Tx3 can be solved at a total cost of 3. The node P then
costs nothing extra. The node S can then be solved by solving all its descendent
nodes and the nodes Txl, TX2 and Tx3. The total cost for this solution is 3 (which
is n). Assigning the truth value "true" to the variables of P results in P being "true."

AND nodes marked
All other nodes are OR

FIG. 2.3.2. AND/OR graph./br Example 2.3.1

274 SARTAJ SAHNI

2.4. n-person game theory. Following Lucas [7], we have:
An n-person noncooperative game in normal form consists of a set N of n

players denoted l, 2,..., n, a finite set N 0, 1, n of r/i d- pure strategies
for each player N, and a payoff function F from N N to Rn.

A strategy n-tuple (S*, ..., S,*) is said to be an equilibrium n-tuple iff for all
i, N and S Ni,

(2.4.1) Fi(S, S’n) >= Fi(S’, S_ , Si, S 1,’", Sn),

where F is the ith component of F. That is, there is no advantage for a player to
unilaterally deviate from an equilibrium point.

Problem GT1. Given a game G (F, n, N), does it have an equilibrium
point?

THEOREM 2.4.1. GT1 e PC.
Proof (a)GT1 z P1. The nondeterministic Turing machine just guesses an
equilibrium point and verifies that the equilibrium condition (2.4.1) is satisfied.

(b) Satisfiability (3 literals/clause)z GT1. Let P be the formula in CNF in
n variables. Define an n-person game as below"

Each player has two strategies 0 and 1. Strategy 0 corresponds to assigning a
truth value "false" to the corresponding variable and strategy to a "true" assign-
ment,

Let P---C /k C2 /k A, Ck, C Ci, v Ci2 v Ci3
where the variables are x l, x2, "", x,. Replace each variable in the clause Ci by
x if x C and by (1 xi) if 2i Ci
Replace "v" by "+", getting C.

Example. Ci=x v x2 v.3Ci=Xl +x2 +(1- x3)=x’l +x2 +x3.

In order that C has a (0, 1) value, replace x’ + x + x by

f/(x’) X’l -4- x2(1 + x’x)+ x(1 X’l)(1 xz).

Clearly, f/(x’) iff Ci(x is "true". Define

h (x’) 2 l-I f/(x’) and F (x’)
i=1

hl(X)J
From the above definition of F(x’), it follows that

max Fl(X’)

2
2

if P(x) is satisfiable,

0

otherwise.

COMPUTATIONALLY RELATED PROBLEMS 275

Let G2(x1, X2) be a 2-person game with 2 strategies per player and with no
equilibrium point"

G()
gl() g < 0.5

lgz(x)J Lg2 0.5

Define
-ga(x)
g2()
0

Fg(X 0

0

Then F2(x defines an n-person game with no equilibrium point. Set

F(x) Fl(x + Fz(x

2
2

Fl(x).

Then F(x) defines an n-person game in which each player has 2 strategies.
For any choice of strategy vector x, we have either (i) or (ii) below.

(i) El(X --0, F(x)-- 2Fz(x __<

By changing the strategies for either x or x2, we can increase the payoff to x or
x2 respectively, as Fz(x defines a game with no equilibrium point. If such a change
results in

2

El(X) i
then everyone’s payoff increases. In any case, such an x cannot be an equilibrium
point.

(ii)

L23

276 SARTAJ SAHNI

Such a point is an equilibrium point, as now

2

2
F(x) F (x)

2
and 2 is the maximum payoff any player can get. So no change from this point,
unilateral or otherwise, would be advantageous to any player. Therefore the
n-person game defined above has an equilibrium point iff P(x) is satisfiable.

As an example for G2(x 1, x2), consider:

Strategy Payoff
(o, o) [o,
(1, O) [1, O]
(1, 1) [0, 1]
(0, 1) [1, O

gl(x) (2 x x2)(x -- x2)
g2(x) --(1 x x2)2

Clearly, no x is a stable (equilibrium) point. Set

Ge(X [El(X)/2-]
[_ge(x)/2_]"

2.5. Optimization.
Problem K1. One-dimensional 0-1 Knapsack problem. The problem is"

(i) maximize xiPi,
i=1

subject to k xiwi M
i=1

xi O, 1, <i<=n,

Pi > O, W > 0

THEOREM 2.5.1. K1 PC.
Proof (a) K ot P1. Clearly, the problem is reducible to P if (i) is replaced by

(i’) y’, xip >__ Z. Now if the length of the input is n then each pi < k" for some k.
So using the method of bisection, we can find the optimal Z in log2 k" n log2 k
query steps of (i’) for some k, k =< [Y[(here [El number of letters in the alphabet
for the NDTM above).

(b) Sum of subsets of integers 0t K1. Let S (sl,..., s,) be the multiset of
integers. We want to find a subset (if one exists) that sums to M. This may be stated
in the form of a K1 problem as below:

maximize

subject to

, XiSi,

E XiSi M,

Xi 0,1.

COMPUTATIONALLY RELATED PROBLEMS 277

From this we trivially conclude that the general 0-1 integer programming
problem with nonnegative coefficients is complete. The 0-1 constraint may be
replaced by the inequalities xi =< 1, =< < n.

The remarks of the last paragraph naturally lead us to the question of the
status of the general integer programming problem (i.e., with both negative and
positive coefficients). Here again, we are interested in only nonnegative solutions.

Problem I1. Determining if Cx b has a nonnegative solution is P-Hard.
(Note the entries of C are integer. If C has all entries of the same sign, then the
problem is P-Complete.)

To see this, consider the following formulation of the sum of subsets problem"

WiX M,
i=1

wi+Yi=l, <i<n.

Problem 12. Determining if Cx >= 0 has any integer solution (i.e., the xi’s are
not constrained to be nonnegative) is P-Hard.

Application of Knuths’ algorithm 6, vol. 2, p. 303] for obtaining integer
solutions to Cx b yields a set of inequalities of the form Dy >= w. Setting w 0
restricts the x to be >=0, Hence Dy 0 has an integer solution iff Cx b has a
nonnegative integer solution. Knuths’ algorithm takes only polynomial time, so
this problem is P-Hard. If the sign restriction on x is removed, then Knuths’
algorithm solves Cx b in polynomial time. (This result was obtained, together
with H. B. Hunt III.)

Problem PF. Permutation functions. We are given a function F(i) which is
defined over all permutations of the elements of the vector i= (1, 2,..-, n).
We wish to determine that permutation which minimizes F over all permutations.
F is assumed to be polynomially computable.

TI-IEOREM 2.5.2. PF PC.
Proof (a) PF a (P NP). This part of the proof is very similar to that used in
Theorem 2.5.1.

(b) Sum of subsets a PF. Define

where xi is the ith element of i.
We compute min F over all permutations of for k 1, 2, ..., n. If there is a

subset that sums to M, then it hasj elements in it, and min F is M. If, on the other
hand, for some k l, min F is M, then I=1 w(xi) M. This defines an algorithm
to solve the sum of subsets problem in polynomial time if we have a polynomial
algorithm for PF.

Problem LB. Assembly line balancing. In this problem we are given n jobs
1, 2, ..., n. Each job requires a certain amount of processing time t. We have
available machines, each having an available process time T. We want to determine
the minimum number ofmachines needed to process all the jobs (the processing ofa
job cannot be split up among several machines).

278 SARTAJ SAHNI

THEOREM 2.5.3. LB e PC.
Proof (a) LB a (P NP). This part of the proof is similar to Theorem 2.5.1.
(b) The following known member of PC shall be used (Karp [5]). Given a set

of positive integers s l, s2, ..., sn, is there a partition I such that

E Si Si/2"
il

We show how this problem may be formulated as a line balancing problem.
Let

s and T Si/2
i=1

then the jobs 1, 2, ..., n can be processed on 2 machines iff there is a partition I
of the jobs such that

E ti T si/2.
iI

This is the minimum number of machines on which the jobs can be processed as

E7=1 ti 2T.
Problem PI. Quadratic programming. Here, the constraints are linear while the

optimization function is quadratic.
THEOREM 2.5.4. PI is P-Hard.
Proof Sum of subsets of integers t PI.

maximize Z xi(xi 1) + Z xisi f(x),

(i) subject to XiSi 5 M,

For 0 < X < 1, Xi(X 1) < 0. This, together with (i), implies f(x) < M if for
some i, 0 < x < 1. Thus max f(x) M iff S has a subset that sums to M.

The following variation of this problem may also be shown to be P-Hard:
linear programming with one nonlinear constraint. Call this problem PI(b). To
show that sum of subsets = PI(b), just consider the formulation:

maximize xis,

subject to xis <= M,

E Xi(Xi- 1)> 0,

2.6. Minimal equivalent Boolean form.
Problem B1. Given a formula B from the propositional calculus, we wish to

find the shortest formula equivalent to it.

COMPUTATIONALLY RELATED PROBLEMS 279

THEOREM 2.6.1. B1 e PC.
Proof (a) B1 a P1. Define Blk to be the problem" is there a Boolean form of

length k equivalent to B? We first show that a polynomial algorithm for P1 implies
a polynomial algorithm for Blk. For this, we construct a nondeterministic Turing
machine that guesses the Boolean form of length k and then uses the "tautology
algorithm" to check that it is equivalent to B. If P1 works in p(n) time, thenthe
"tautology algorithm" works in p2(n) time (as tautology a P1), and so the Turing
machine constructed above works in p2(n) time. Hence Blk a P1. The proof for
B1 a Blk is similar to part (a) of the proof ofTheorem 2.3.1. We note that this proof
relies heavily on our informal notion of P-Reducibility. The proof does not show
that B is polynomially related to the other problems in PC. If the time complexity
of the tautology problem is fl(n) and that of P1 if f2(n), then this reduction gives a

f2(fl(n)) algorithm for B 1. If fl (and consequently f2) is exponential, thenf2(fl(n))
is of the form 22". All our other reductions have been of the form p(n). f2(n) or
f2(p(n)) for some polynomial p.’

(b) tautology a B 1. A formula P is a tautology iff its minimal form is "1".

3. Conclusions. We have extended the class of known P-Complete problems
to include some important applications from network flows, game theory,
artificial intelligence and integer optimization. We have also introduced the
notion of P-Hard. The results indicate that many of the problems for which no
polynomial time bounded algorithm is known are related in terms of time com-
plexity. Indeed, all the evidence to date suggests that there is no polynomial al-
gorithm for any of these problems.

Acknowledgments. I am grateful to Professor Ellis Horowitz for many
stimulating discussions on this subject. This work was motivated by the work of
Cook [3] and Karp [53.

REFERENCES

[1 C. BERGE AND GHOUILA-HOwRI, Programming, Games and Transportation Networks, John Wiley,
New York, 1964.

[2] C. L. CHANG AND J. R. SLAGLE, An admissable and optimal algorithm for searching AND/OR
graphs, Artificial Intelligence, 2 (1971), pp. 117-128.

I31 S. A. COOK, The complexity of theorem proving procedures, Conference Record of Third ACM
Symposium on Theory of Computing, 1971, pp. 151-158.

E4] J. E. HOPCOFT AND J. D. ULLMnN, Formal Languages and their Relation to Automata, Addison-
Wesley, Reading, Mass., 1969.

[5] R. M. KAP, Reducibility among combinatorial problems, Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[6] D. E. KNUTH, Art of Computer Programming, vols. and 2, Addison-Wesley, Reading, Mass.,
1969.

[71 W. F. LUCAS, Some recent development in n-person game theory, SIAM Rev., 13 (1971), pp. 491-
523.

E8] D. M. MOYLES AND G. L. THOMSON, An algorithm for finding a minimum equivalent graph of a
digraph, J. Assoc. Comput. Mach., 16 (1969), pp. 455-460.

[9] N. J. NILSSON, Problem Soh,ing Methods in Artificial Intelligence, McGraw-Hill, New York, 1971.

[10] R. SIMON AND R. C. T. LEE, On the optimal solution ofAND/OR series-parallel graphs, J. Assoc.
Comput. Mach., 18 (1971), pp. 354-372.

’ Note,that here we are not saying that the best way to solve this problem takes 22n time on a
deterministic machine. In fact one can easily solve it in time bounded by 2 c". We are just making the
point that this particular reduction does not show that the two problems are polynomially related.

SIAM J. COMPUT.
Vol. 3, No. 4, December 1974

A NOTE ON PERFECT ELIMINATION DIGRAPHS*

D. J. KLEITMAN"

Abstract. The purpose of this note is to settle a conjecture on perfect elimination digraphs raised
by Haskins and Rose in this journal, and to make some remarks that illuminate the nature of digraphs
satisfying the conditions defined by them.

Key words, digraphs, sparse matrices, perfect elimination digraphs

The purpose of this note is to settle a conjecture on perfect elimination
digraphs raised by Haskins and Rose 1] in this journal and to make some remarks
that illuminate the nature of digraphs satisfying the conditions defined by them.

Haskins and Rose are concerned with characterizing "perfect elimination
digraphs". The class P of perfect elimination digraphs, may be defined recursively,
according to: G is in P if G contains a vertex x such that G {x} is in P, and if,
for any distinct vertices y and z of G, (y, x) and (x, z) are arcs of G, then (y, z) is an
arc of G. Here G {x} is the digraph obtained by omitting the vertex x and all
arcs containing x from G.

Perhaps the clearest statement of the perfect elimination property is as follows.
We say that x shorts y and z in G if the arcs (y, x) and (x, z) are arcs of G but (y, z)
is not. Then G is not a perfect elimination digraph when it contains a set Q con-
sisting of three or more vertices, every one of which shorts two others.

We say that x separates y and z (for x, y, z distinct) in G if x lies on a chordless
path in G from y to z, or z to y; and x separates y and y if x lies on a chordless
path in G from y to itself that contains at least one other vertex. Haskins and Rose
introduce two conditions, the "antisymmetric separation condition" and the
"chorded path condition". They note that each of these conditions must be satis-
fied by a digraph possessing the perfect elimination property, and they conjecture
that the conditions are each sufficient for strongly connected digraphs to possess
that property. Below we make several observations that lead to the conclusion
that neither these conditions nor any other conditions that seek to characterize
strongly connected perfect elimination digraphs or even strongly connected
"minimally imperfect" elimination digraphs by behavior on a finite set of paths
can succeed.

The "antisymmetric separation condition" states that there are no vertices
x, y, u, v, w, of G satisfying u, v, w, separate (x, y) and x separates (u, v), y separates
(w, t) (u, v, w, need not be distinct here).

The "chorded path condition" is that no x, y, u, v, w, satisfy u, v, w, separate
(x, y), and there is a path P1 from u to v in G passing through x whose length cannot
be diminished by one by using a chord, and likewise a path P2 from w to in G
passing through y that cannot be similarly shortened.

* Received by the editors January 22, 1974, and in revised form June 5, 1974.

" Mathematics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139. Supported in part by the Office of Naval Research under contract ONR N00014-67-A-0204-
0063.

28O

PERFECT ELIMINATION DIGRAPHS 281

Haskins and Rose show that the second of these conditions implies the first,
and both must be satisfied by any perfect elimination digraph. They suggest the
question" "Are there digraphs that satisfy either or both of these properties without
being perfect elimination digraphs?" They provide an example of such a digraph
that is not strongly connected.

We make the following remarks.
Remark 1. Every vertex other than x and y on a chordless (x, y) path (having

at least 3 vertices) shorts other vertices on the path. Also every non-end vertex on
paths like P1 and P2 in the "chorded path condition" shorts other vertices on these
paths.

Remark 2. In consequence, if the antisymmetric separation condition fails,
so that there exist x, y, u, v, w, satisfying

(i) u, v, w, lie on chordless (x, y) paths,
(ii) x lies on a chordless (u, v) path,

(iii) y lies on a chordless (w, t) path.
Every vertex on the at most 6 paths referred to here shorts two other vertices on
these paths. Thus, G restricted to the paths mentioned here will fail to be a perfect
elimination digraph.

Remark 3. Likewise, if the "chorded path condition" fails, G restricted to the
union of the chordless (x, y) paths containing u, v, w and and P and P2 will fail
to be a perfect elimination graph.

Remark 4. Given a digraph G, let the digraph G xo be the digraph formed
from G by adding one new vertex xo and arcs joining xo to and from every vertex
of G. Then G xo is a perfect elimination digraph whenever G is (since no vertex
of G shorts xo, y for any y in G xo, and any set of vertices Q, Q c G xo,

such that every element of Q shorts two others in Q will be such a Q in G, or the
addition of xo to such a Q in G).

Remark 5. G @xo satisfies Haskins and Rose’s two conditions mentioned
above whenever G does. (As there can be no chordless (xo y) or (y, x0) path having
3 or more vertices, Xo cannot be x, y, u, v, w or satisfying the conditions in Remark 2
above. Since no chordless path in G @ xo containing xo can have any other
interior vertices, xo cannot even lie on the 6 paths mentioned in Remark 2, so
that if the antisymmetric separation condition fails for G @ xo, it fails for G. The
converse is trivial. For the "chorded path condition", one can observe that xo
cannot lie on paths having the properties of P1 and P2 and the union of paths in
Remark 3 therefore if they exist in G xo, they exist in G and vice versa.)

Remark 6. Since G q)xo is strongly connected for any G, any example G of
a nonstrongly connected digraph satisfying the two Haskins-Rose conditions
not being a perfect elimination digraph immediately gives rise to a strongly con-
nected example, G xo.

Remark 7. Consider the digraph Gk consisting of the integers 1, 2, ..., k as
vertices with (i, j) in Gk if i+ =j and i4: 3(mod4) or if i=j+ and j-- l(mod 4). G is clearly a perfect elimination digraph, and yet no path in G
contains 4 or more arcs.

Let G differ from G only in containing the arcs (1, k) and (k, 1) in addition to
the arcs of Gk. G is a peculiarly oriented "chain"; C, a similarly oriented polygon.
It is obvious that G for k _> 4 is not a perfect elimination digraph, yet becomes one

282 D.J. KLEITMAN

if any one of its vertices is omitted. On the other hand, the six paths of Remark 2 or
Remark 3 above cannot possibly include more than 27 vertices in ’k, since only
the one containing and k can include more than 4 vertices, while that one can
have 7. Thus if for k >= 28, ,k were to fail to satisfy the Haskins-Rose conditions,
by Remarks 2 and 3, a subgraph of , having 27 or fewer vertices would fail to
satisfy these conditions, and therefore not be a perfect elimination digraph. This
cannot be. In fact, the six paths of Remarks 2 and 3 must overlap, and ’8 satisfies
the two conditions and is not a perfect elimination digraph. In light of Remarks 4, 5
and 6, the strongly connected "wheel graph" H for k >= 8 consisting of , xo
similarly satisfies these conditions without being a perfect elimination digraph.

Remark 8. In light of the previous remarks and the above example, it is clear
that no property that seeks to characterize perfect elimination digraphs in terms of
their behavior on a finite set of chordless paths can do so, in either the strongly
connected or general case.

Remark 9. In the construction above, though x0 supplies strong connectedness
to the graph H, x0 is irrelevant to the fact that Hk satisfies the given conditions
without being a perfect elimination digraph. In fact, this irrelevance is the content
of Remarks 4 and 5. One is tempted to ask, "Is there a similar example in which the
strongly connectedness is more essentially interwoven into the digraph?" One
could, in other words, formulate the following conjecture" in any strongly con-
nected digraph G satisfying the Haskins-Rose conditions without being a perfect
elimination digraph, there is a set of vertices Z such that the graph induced by
G on G- Z is a nonstrongly connected digraph satisfying the Haskins-Rose
conditions without being a perfect elimination digraph. In our examples above, Z
would consist of the vertex x0. Even this conjecture fails to the same extent as the
former one. A simple example is the "biwheel". Take two copies H, H, of H for
k __> 7, identify xo with 1’ and x with and remove the arcs (k, 1) and (k’, 1’)
(leaving (1, k) and (1’, k’)). The resulting graph is strongly connected, does not
satisfy perfect elimination, does satisfy the Haskins-Rose conditions, and removal
of any vertex leaves a perfect elimination digraph.

Acknowledgment. The author wishes to thank the referees for their helpful
commentary.

REFERENCE

[1] L. HASIINS AND D. J. ROSE, Toward characterization ofperfect elimination digraphs, this Journal,
2 (1973), pp. 217-224.

SIAM J. COMPUT.
Vol. 3, No. 4, December 1974

REVERSAL-BOUNDED ACCEPTORS AND
INTERSECTIONS OF LINEAR LANGUAGES*

RONALD BOOK’, MAURICE NIVAT, AND MICHAEL PATERSON

Abstract. A Turing machine whose behavior is restricted so that each read-write head can change
its direction only a bounded number of times is reversal-bounded. Here we consider nondeterministic
multitape acceptors which are both reversal-bounded and also operate in linear time. Our main result
shows that such an acceptor need have only three pushdown stores as auxiliary storage, each pushdown
store need make only one reversal, and the acceptor can operate in real time.

Key words, nondeterministic multitape Turing acceptors, reversal-bounded, real time, linear
context-free languages, language hierarchies, resource bounded acceptors

Introduction. In 1963, Rabin 10] showed that for deterministic Turing
acceptors which operate in real time, two storage tapes yield more computational
power than one, i.e., there is a set which is accepted in real time by a deterministic
Turing acceptor with two storage tapes but which is not accepted in real time by
any deterministic Turing acceptor with only one storage tape. The question of
whether for every k there exists a set accepted in real time by a k + storage tape
acceptor but not by any k tape acceptor became known as "Rabin’s problem".
In 1970, Book and Greibach [3] solved the nondeterministic version ofthis problem,
showing that for every k, every language accepted in real time by a nondeter-
ministic Turing acceptor with k storage tapes can be accepted in real time by a
nondeterministic Turing acceptor with just two storage tapes. Recently, Aanderaa
1] solved Rabin’s problem, showing that for every k, k + tapes are more powerful
than k tapes. The purpose of the present paper is to establish results similar to those
of Book and Greibach in a more restricted setting.

A Turing machine whose behavior is restricted so that each read-write head
can change its direction only a bounded number of times is reversal-bounded.
Reversal-bounded multitape acceptors which operate without further restrictions
have been studied in [2]. Here we consider nondeterministic multitape acceptors
which are both reversal-bounded and also operate in linear time Our main
result, Theorem 3.1, shows that such an acceptor need have only three pushdown
stores as auxiliary storage, each pushdown store need make only one reversal, and
the acceptor can operate in real time. Hence, for every k, a language can be expressed
as the nonerasing homomorphic image of the intersection of k linear context-free

Received by the editors January 25, 1974, and in revised form June 3, 1974. These results were
announced at the 6th Annual ACM Symposium on Theory of Computing held in May 1974, at Seattle,
Washington. An extended abstract appears in the Proceedings of that Symposium. The research was
performed while the second author visited the Center for Research in Computing Technology at
Harvard University, and Project MAC at MIT, and while the third author visited Project MAC.
The work was supported in part by the National Science Foundation under Grants GJ-30409 and
GJ-34671.

" Yale University, New Haven, Connecticut 06520., University of Paris VII, Paris, France.
University of Warwick, Coventry, Warwickshire, England.

283

284 RONALD BOOK, MAURICE NIVAT AND MICHAEL PATERSON

language if and only if it can be expressed as the length-preserving homomorphic
image of the intersection of three linear context-free languages.

Let us consider this resul.t from a different vantage point. Liu and Weiner [9]
have shown that for any k, there is a language which can be expressed as the inter-
section of k + context-free languages but which cannot be expressed as the inter-
section of k context-free languages. The argument in [9] shows more than is stated"
for any k, there is a language which can be expressed as the intersection of k +
linear context-free languages (which happen to be deterministic counter languages)
but not as the intersection of k context-free languages. Hence one obtains an
infinite hierarchy of classes of languages by taking intersections of linear context-
free languages. On the other hand, Baker and Book [2] have shown that if one
considers the image under arbitrary homomorphic mappings of intersections of
just two linear context-free languages, then one obtains the entire class of recur-
sively enumerable sets. Hence there is only a trivial finite hierarchy obtained by
taking images under arbitrary homomorphic mappings of intersections of linear
context-free languages.

The situation studied here lies between the results of Liu and Weiner and those
of Baker and Book. If one considers the images under nonerasing homomorphic
mappings of intersections of linear context-free languages, then there is only a
finite hierarchy" it is enough to consider images of intersections of just three
linear context-free languages. (It is not known whether it is sufficient to consider
intersections of only two such languages.) Thus only a finite hierarchy exists.
This is similar to results in [3] which show that if one considers the images under
nonerasing homomorphic mappings of intersections of arbitrary context-free
languages, then there is only a finite hierarchy.

In order to prepare for our main results (3), we set forth some facts about
reversal-bounded acceptors and multitape acceptors in 1. In 2 we show that
reversal-bounded computation in linear time is no more powerful than reversal-
bounded computation in real time.

In this paper we assume a familiarity with concepts from automata and
formal language theory. We do not define specific models in detail because the
results are independent of the many minor variations in the definition of a Turing
machine which abound in the literature. When certain conventions regarding a
machine’s operation are useful, we state them in as much detail as is necessary.

1. Preliminaries. In this section we present background material needed in
later sections. The results in this section are not new, but some may not have
been stated in the way they are presented here, and some are not well known.

Unless otherwise noted, we consider only multitape Turing acceptors which
have a one-way read-only input tape and some number of Turing machine tapes
as auxiliary storage. The set of input strings accepted by a machine M is denoted
by L(M). An acceptor M operates in real time if for each input string w accepted by
M, there is an accepting computation with precisely Iwl steps ;1 alternatively, M"
reads a new input symbol at every step of the computation. An acceptor M operates
in linear time if there is a constant => such that for each input string w accepted
by M, there is an accepting computation with at most tlwl steps.

For a string w, Iwl is the length of w.

REVERSAL-BOUNDED ACCEPTORS 285

Now let us consider multitape acceptors which operate with a bound on the
number of "reversals" that each auxiliary storage tape can make in any compu-
tation. A reversal of a Turing machine tape is a step in a computation which
causes the read-write head to change direction, e.g., after a sequence of transitions
in which the head moves only to the right, a transition occurs in which the head
moves to the left. See [2], 4] and 7] for results on reversal-bounded computations.

It is well known that the computation of a single Turing machine tape can be
imitated by two pushdown stores without loss oftime. Further, ifthe Turing machine
tape makes r reversals, then each pushdown store will make at most r reversals
I.again, without loss of time).2 Thus we shall restrict attention to multitape Turing
acceptors with pushdown stores as auxiliary storage.

Suppose we restrict the operation of a pushdown store so that there is some
fixed bound on the number of reversals that it can make in any computation.
We claim that such a pushdown store can be imitated without loss of time by a
number of pushdown stores such that each makes at most one reversal in any
computation. If one pushdown store makes at most 2r- reversals in a com-
putation, then consider r pushdown stores which operate as follows. For each

1, ..., r, pushdown store is "pushed" when the original pushdown store is
"pushed" between reversals 2i 2 and 2i 1. When the original pushdown store
is "popped", then the jth pushdown store is "popped", wherej is the largest index
of a pushdown store which is not empty.

We summarize the above remarks in the following lemma.
LEMMA 1.1. IfM1 is a multipushdown acceptor with k pushdown stores which

operate in such a way that in every computation each pushdown store makes at most

2r- reversals, then from M1 one can construct a multipushdown acceptor M2

with kr pushdown stores such that L(M2) L(M1) and in every computation ofM2,
each pushdown store makes at most one reversal. Further, M2 is deterministic ifM is,

’s running time (work space) then t(n) alsoand if t(n) is afunction which bounds M1
bounds Mz’s running time (work space). 3

Consider a nondeterministic multipushdown acceptor M which operates in
real time. If M has only one pushdown store, then the language accepted by M is
a context-free language. However, even if M has more than one pushdown store
as auxiliary storage, then the language L(M) accepted by M can still be represented
in terms of context-free languages.

LEMMA 1.2. For every k >_ 1, a language L is accepted by a nondeterministic
Turing acceptor M with k pushdown stores as auxiliary storage which operates in
real time ifand only if there exist k deterministic context-free languages L1, ..., Lk

and a length-preserving homomorphism4 h such that L is the image ofthe intersection

of L1,..., Lk under h, i.e., L h(L f) 71 Lk). Further, if the i-th pushdown
store ofM, <= <= k, is restricted in its operation (e.g., is reversal bounded or is a

counter), then the language L can be accepted by a deterministic pushdown store

Note that a reversal of a pushdown store is a change from "pushing" to "popping" or vice versa.
A bound on the work space is a bound on the number of tape squares on each storage tape used

in the computation. It is a bound which applies to each storage tape, not to the sum taken over all tapes.
’ Here we consider only homorphisms between free monoids. A homorphism h:* A* is

nonerasing if for all w e *, h(w) e implies w e, where e is the empty word (the identity of *),
and is length-preserving if for all w *, h(w) has the same length as w.

286 RONALD BOOK, MAURICE NIVAT AND MICHAEL PATERSON

acceptor N which operates in real time and whose pushdown store is restricted in
the same way as the i-th pushdown store ofM.

The first sentence of Lemma 1.2 is Lemma 3.2 of [6].5 The second part is an
observation based on the proof given in [6]. Since this result is very useful (and
does not appear to be well known), we present a brief sketch of the proof.

First recall that every context-free language can be accepted by a nondeter-
ministic pushdown store acceptor which operates in real time, and that the class
of languages accepted by those nondeterministic Turing acceptors with which we
deal is closed under length-preserving homomorphism. Thus, the "if" part is
straightforward.

Suppose M is a nondeterministic Turing acceptor with k pushdown stores as
auxiliary storage and M operates in real time. At any one step of a computation
of M, the transition depends upon (i) the input symbol currently read, (ii) the state
of the finite-state control, (iii) for each of the k pushdown stores, the symbol being
scanned on the top of the pushdown store. (Note that the total contents of a push-
down store do not affect a particular transition--only the symbol on the top of the
store affects the transition.) A "history" of an accepting computation of M must
record for each step the input symbol read, the current state of M, the symbols
being scanned on the top of the k pushdown stores, and the transition to be made.

Let Q be the set of states of M, let E be the input alphabet of M, and for each
1, ..., k, let Fi be the alphabet for the ith pushdown store. If 6 is the transition

function of M, then for each q Q, a E, 7 Fi, =< __< k, label each transition
in the set 6(q, a, ’1,’", 7k) (recall" M is nondeterministic). Now for each

1, ..., k, construct a deterministic pushdown store acceptor M with Q I,,J {D},
DCQ, as its set of states, Q x Z x F1 x x Fk x I-I as its input alphabet,
where 1-I is a list of all transitions given by 6, with pushdown store alphabet F,
and with initial and accepting states just as in M. The transition function 6i is
defined as follows"

(i) for each qQ, aE, 7iF, __<i__< k, and each transition n, if n is
(p, zl, "’", z) 6(q, a, 71, "’", 7), P e Q, zj e F’, 1 <_ j _<_ k, then

6i(q, [q, a, 71, "", 7k, hi, 3;i) (P, zi)

(ii) for each qQ, yQ E F Fk l-I, 7Fi such that
6(q, y, 7) is not defined by (i), 6(q, y,

(iii) for each y Q E F1 Fk l-I, 7i Fi, 6i(D, Y, 7i)= (D, 7i).
What language does the pushdown store acceptor M accept? In an accepting

computation, the pushdown store of M imitates the action of the ith pushdown
store of M during an accepting computation, accepting if M would accept its
input in a computation where the various choices of symbols from F1 Fk
being input to M appear on the top of M’s k pushdown stores. Thus, a string in

L(MI) f-).., f-)L(Mk) is a "history" of an accepting computation of M. Let
h’(Q E F Fk l-I)* E* be the homomorphism determined by
defining h(q,a, 71,..., 7k,n)= a. If L L(M) for i= 1,..., k, then clearly
L h(L ["1 L,).

A more abstract version ofthis result (stated in terms of AFL and AFA) is the "multitape re-
presentation" theorem of [5].

REVERSAL-BOUNDED ACCEPTORS 287

Notice that each M reads a new input symbol at every step, that is, each M
operates in real time.

Notice that if some Fi is an alphabet with only one symbol, then Mi is a counter.
If the ith pushdown store of M is reversal-bounded, then there is a bound on the
number of reversals M makes in its accepting computations. Altering M’s
finite-state control to count the number of reversals and to halt and reject if M
attempts to accede this bound yields the reversal-bounded acceptor N.

This concludes our sketch of the proof of Lemma 1.2.
Recall that a language is linear context-free if and only if it is accepted by a

nondeterministic pushdown store acceptor which operates in such a way that in
every computation the pushdown store makes at most one reversal (see [4]).6
Combining this fact with Lemmas 1.1 and 1.2, we note the following fact.

LEMMA 1.3. IfM is a nondeterministic Turing acceptor which has k pushdown
stores, each of which makes at most 2r reversals in any computation and which
operates in real time," then the language accepted by M is the length-preserving
homomorphic image of the intersection of kr linear context-free languages, i.e., there
exist linear context-free languages L1, L2, Lkr and a length-preserving homo-
morphism h such that L(M) h(L fq f] Lkr). Further, each ofthe linear contexi-
free languages is accepted by a deterministic pushdown store acceptor which runs in
real time and operates in such a way that in every computation the pushdown store
makes at most one reversal.

In Lemma 1.2, the restriction that h be length-preserving is of importance since
it is shown in [2] that every recursively enumerable set is the homomorphic image
of the intersection of two linear context-free languages.

2. Linear time is no more powerful than real time. In [3] it is shown that for
nondeterministic multitape Turing acceptors, linear time is no more powerful
than real time. That is, if M is a nondeterministic multitape Turing acceptor
which operates in linear time, then there is a nondeterministic multitape Turing
acceptor M2 such that M2 operates in real time and L(M2) L(M1). In this section
we give a new proof of this result, a proof that shows that one need add only
reversal-bounded pushdown stores to M

LEMMA 2.1. Let M be a multipushdown acceptor with p pushdown stores as
auxiliary storage. If M operates in linear time, then there is a nondeterministic
acceptor M2 with p + 3 pushdown stores which (i) operates in real time, (ii) accepts
precisely L(M1) (i.e., L(M2) L(M1)), and (iii) operates in such a way that in every
computation three of the pushdown stores each make at most one reversal.

Proof. Let >= be a constant such that for every input string accepted by
M 1, there exists an accepting computation of M1 on w with at most tlwl steps.
From M we construct a nondeterministic acceptor M2 with p + 3 pushdown
stores. The first three pushdown stores will be referred to as Tapes 1, 2, and 3. M2

operates in three distinct phases as follows.
Phase 1. In this phase, Tapes and 3 are active while Tape 2 is not. The com-

putation begins with M2 writing an arbitrary string a a, on Tape and simul-

Note that one can modify the argument used in [4] to obtain a nondeterministic acceptor with
both runs in real time and makes only one reversal.

288 RONALD BOOK, MAURICE NIVAT AND MICHAEL PATERSON

taneously simulating a computation of M1 on al ...a,, that is, M2 nondeterministi-
cally "guesses" what the steps at which M reads a new input symbol are, guesses
what this symbol is, and stores this guess on Tape 1. To achieve the improvement
in running time, M2 will imitate 3t steps of M’s computation during each step
of M2’s computation and will store the string a ...a, by storing 3t symbols in
each tape square of Tape 1. v

Simultaneously, M2 will read a new input symbol from its own input tape
at each step of the computation, storing the real input on Tape 3 with 3t symbols
on each tape square.

If the computation of Mx being imitated by M2 is an accepting computation,
then M2 transfers to Phase 2 (below) upon completing the imitated computation.
Otherwise, M2 halts.

If the computation of M1 being imitated by M2 is both an accepting computa-
tion and has at most tn steps, then M2 takes at most tn/3t n/3 steps to complete
Phase 1. 8

Phase 2. M2 "pops" Tape 1, at the rate of one tape square (hence, 3t symbols)
per step, storing the contents on Tape 2 until it guesses that only a ...a,/2 re-
mains on Tape and a, an2 + has been written on Tape 2. During this process,
M2 continues to read a new symbol from its input tape at each step of the com-
putation, storing the real input on Tape 3 with 3t symbols in each tape square.
Phase 2 continues until m2 guesses that a total of n/2 input symbols have been read.

Phase 3. Tapes and 3 are now matched against each other to check that the
first half of the guessed input string actually equals the first half of the real input.
At the same time, M2 reads the remaining input at the rate of one per step and checks
these against Tape 2 to verify the second half of the guess. If the checks all succeed,
then M2 accepts the input at the step where it reads the last input symbol.

m2 runs in real time, and clearly each of Tapes 1, 2, and 3 make at most one
reversal. []

From the construction used in the proof, of Lemma 2.1, we note that any re-
strictions on the behavior of the tapes ofM will be preserved by the corresponding
tapes of M2. Thus we have the following result.

COROLLARY. Let M be a multipushdown acceptor with k pushdown stores
which operate in such a way that in every computation each pushdown store makes
at most one reversal. IfM operates in linear time, then there is a nondeterministic
multipushdown acceptor M2 with k + 3 pushdown stores such that (i) L(M2)
L(M 1), (ii) m2 operates in real time, and (iii) in every computation, each pushdown

store makes at most one reversal. Thus there exist deterministic linear context-free
languages L l, ..., Lk+ 3 and a length-preserving homomorphism h such that
L(mx) h(L fl L2 fl fl Lk+3).

In the next section we show how the total number of tapes used may be reduced
to just three. A technique which will be very useful in proving that result is illus-
trated in the proof of the following lemma.

The imitation of 3t steps of Ml’s computation byM follows the standard "speed-up" techniques
of [8].

We leave to the reader the alterations needed when n is not divisible by 6t.

REVERSAL-BOUNDED ACCEPTORS 289

LEMMA 2.2. For any p and any finite alphabet Z, there are linear context-free
languages, L and L2, and a length-preserving homomorphism h such that {(wc)Plw
e E*} h(L f) L2) where c is a symbol not in Z.

Proof We assume that p 2q, the proof for p odd being very similar and we
describe a nondeterministic online acceptor M such that L(M) {(wc)2qlw e Z* },
M operates in real time, and M has two pushdown stores, each of which make only
one reversal. The existence of L 1, L2, and h follows from Lemma 1.3.

We refer to M’s two pushdown stores as Tape and Tape 2. Each tape has
two tracks. On each tape M will write a sequence of "blocks". A block consists of
two strings u, v of the same length terminated by endmarkers to the final symbol.
One string is written on each track, say u on the top track and v on the bottom.

M begins its computation by reading its input at the rate of one symbol per
step. It writes q blocks on both Tapes and 2 as follows. On the top track of
each tape, M records the input that it reads until the (q 1)st c has been read.
On the bottom track of each tape, M nondeterministically guesses and writes an
arbitrary symbol from E at every step at which a symbol from Z is read as input,
andM writes a c at every step at which a c is read as input. Thus, each block consists
of a pair uic, vic of strings in Z*c such that [ui[= [vii and uic is part of the actual
input read by M (the total input read by M up to this point is u lcu2c u,_ c).

Now M reads the next portion x of input, copying it onto the top tracks of
both tapes, and guesses a string y, lyl Ixl, which is written on the bottom tracks
of both tapes. At some point in reading uq, M starts to pop Tape 2, copying the
symbols from x, y onto the bottom and top tracks, respectively, of Tape 1. Simul-
taneously, M matches the symbols popped from the bottom track of Tape 2 with
the actual input read. If the next input symbol is c, then it is copied onto both tracks
of Tape 1. After this operation, the contents of the tapes is as follows.

Tape 1"

Tape 2"

131C 132c C13q__ cxYRc
I) C I) 2C ClPq__ cYXRc

131C bl2C Cblq_ C

l)lC l)2C CVq_ C

where the rightmost c is being scanned. 9 If all the matched symbols have agreed,
then the input read so far is recorded on the top track of Tape 1.

M’s next operation is to pop both tapes simultaneously, comparing blocks
symbol by symbol. If these comparisons all succeed, then u u2 u_

(xy)R ((yxR)R (19q_ 1)R (V2)R (/)1)R. Simultaneously, m compares
the bottom track ofTape with the remaining input, and continues this comparison
either until the input is exhausted or until Tape is empty. If all of these compari-
sons agree, then the input to M was (wc)2q for some w E*, where w u (vi)R

(xy)R for each i, _< =< q 1, and M halts in an accepting state. Here,]wl is
even. The case for Iwl odd is dealt with in a similar way.

It is clear that M meets all the requirements of the lemma.

For a string w, ws is the reversal of w.

290 RONALD BOOK, MAURICE NIVAT AND MICHAEL PATERSON

3. Main results.
THEOREM 3.1. Let L be a language. Thefollowing are equivalent"

(i) L is accepted by a nondeterministic multipushdown acceptor which operates
in such a way that in every computation each pushdown store makes at most a bounded
number of reversals and which runs in linear time;

(ii) L is accepted by a nondeterministic multipushdown acceptor which operates
in such a way that in every accepting computation each pushdown store makes at
most one reversal and which runs in real time;

(iii) L is the length-preserving homomorphic image of the intersection of some
finite number of linear context-free languages;

(iv) L is accepted by a nondeterministic acceptor with three pushdown stores
which operates in such a way that in every computation each pushdown store makes
at most one reversal and which runs in real time;

(v) L is the length-preserving homomorphic image of the intersection of three
linear context-free languages.

From Lemma 1.1 and the corollary to Lemma 2.1, we see that (i) implies (ii).
From Lemma 1.3, we see that (ii) implies (iii), and that (iv) implies (v). It is easy to
see that the class of languages accepted by nondeterministic multipushdown
reversal-bounded acceptors is closed under nonerasing homomorphism, and
recalling that a language is linear context-free if and only if it is accepted by a
nondeterministic pushdown store acceptor which makes at most one reversal on
the pushdown store and which runs in real time, we see that (v) implies (iv).
Obviously, (iv) implies (i). Thus we are left with the task of showing that (iii)
implies (iv). To accomplish this, we rely on the fact that the class of languages
specified by the acceptors in (iv) is closed under nonerasing homomorphism, so
that it is sufficient to establish the following lemma.

LEMMA 3.2. For any k >= and any choice of k linear context-free languages,
L1, Lk, there is a nondeterministic acceptor M with three pushdown stores as
auxiliary storage such that (i) L(M) L 1") Lk, (ii) M operates in real time,
and (iii) in every computation ofM, each pushdown store makes at most one reversal.

Proof. Before we embark on a detailed description of the construction of M,
it may be helpful to present an informal outline showing how the various techniques,
already introduced, are to be combined. For each 1, ..., k, let Mi be a non-
deterministic one-reversal pushdown store acceptor which accepts the language
Lg in real time. We must describe a nondeterministic acceptor M with three
pushdown stores, referred to as Tapes 1, 2, and 3.

The principal problem--of how M can simulate all of the M while using only
one reversal per tape--is solved by using Tape 3 first to simulate the "pushing"
phases of the computations of M1, "", Mk successively and then to simulate the
"popping" phases of the computations of Mk,... M1 successively. This is
accomplished by using Tapes and 2 to provide 2k copies of the same string for the
2k sections of the simulation. We need to ensure that the correct segments of these
words are read during each part ofthe simulation, and for this purpose the "turning
point" for each Mi is inscribed on each copy.

With all the simulations, M would run naturally in linear time rather than
in real time. The method ofthe proof of Lemma 2.1 is employed to make M operate
in real time. In the first portion of M’s computation, all of the simulations are

REVERSAL-BOUNDED ACCEPTORS 291

completed on guessed input, while the real input is stored on another channel of
Tape 1. Further, another copy of the guessed input is stored on Tape 3, with the
first half in forward order on one channel and the second half in reverse order on
another channel. The final phase involves checking both the real input stored on
Tape and the real input as it continues to be read against these two channels,
just as in the proof of Lemma 2.1.

One task for Tapes and 2 is to provide multiple copies of the guessed input
for the simulation of the Mi’s and also a "folded" copy of this guess which is pre-
served on Tape 2 for the checking phase just described. An examination of the
construction used in proving Lemma 2.2 shows that these elements are already
present as long as M guesses both parts of each block. The corresponding value
there of q is 4k + 4, and the folded string is found on the two channels of the first
half block. Tape will have three channels, while Tapes 2 and 3 each will have two
channels.

Now we can proceed to a more detailed account. A block is to consist of two
strings of symbols written with 4k + 5 symbols to the tape square on each of two
channels of a tape (so there are 2(4k + 5) symbols on each tape square). The top
channel contains some string al a,, for some n, which is increased in length to
the next multiple of 8k + 10 by adding initial dummy symbols standing for blanks,
i.e., b... bal...a,. The ai’s are taken from the input alphabet, except that k
distinct special markers can be added to any symbol, and in al a,, each marker
occurs exactly once. The ith marker (1 =< =< k) will be intended to indicate the
position in the string al a, at whichM reverses its pushdown store(from pushing
to popping). The lower channel is of the same form but in reverse order.

An accepting computation ofM can be described in three phases. Input symbols
are read throughout at the rate of one per step, so M operates in real time.

Phase 1. For the first d steps, where M guesses d, the only activity is that the
input symbols are recorded on the third channel of Tape 1, with one symbol per
tape square. (The correct value for d to allow the computation to succeed will be
defined later.) After d steps, M begins to guess a block Bo and writes it on the first
two channels of Tapes 1, 2 and 3. Throughout Phase (and Phase 2) the input to
M continues to be copied onto channel 3 of Tape at the rate of one symbol per
tape square.

Phase 2. M guesses a new block B1 and writes it on the first two channels of
Tape and on the two channels of Tape 2. As this proceeds, M simulates M1 on
the string al a, contained in this block, using a channel of Tape 3 to simulate
Ml’s pushdown store. When marker in this string is reached, ifM is at that point
of its computation where the pushdown store is to be reversed, then the state ofM
is recorded on the other channel of Tape 3 and the simulation is suspended. If
M1 is not at that point, then this computation of M is unsuccessful. Since 4k + 5
simulated input symbols must be read at each step, M’s simulation of M1 must
be sped up by a factor of 4k + 5, using the techniques of [8]. M proceeds in the
same way with k more blocks B2, Bk and simulates the "pushing" part
of computations ofM2, Mk in turn. See Fig. for a sketch of M’s tape contents
at this point.

Next, k more blocks are guessed and recorded on Tapes and 2, while M
attempts to simulate in order the "popping" part of computations by M,

202

CHANNEL
CHANNEL

CHANNEL

RONALD BOOK, MAURICE NIVAT AND MICHAEL PATERSON

TAPE

CHANNEL 2 B B1 B2

TAPE 2

CHANNEL

CHANNEL 2 -Bo- <> ’,

P P2 Pk

TAPE :.5
FIG. 1. A sketch of the contents of Tapes 1, 2 and 3 after the first part of Phase 2. For each i, Pi is the

configuration of M as it reverses

Mk- 1, "’", M1. The simulation of Mi is resumed in the state recorded on Tape 3
and at the point in the guessed block marked by the ith marker. The computation
of M is unsuccessful unless all thc M are simulated to acceptance. See Fig. 2 for
a sketch of M’s tape contents at this point.

A half-block is now guessed and copied onto Tapes and 2. Then this half-
block is popped from Tape 2, and the reverse of channels and 2 of Tape 2 is
pushed onto channels 2 and 1, respectively, of Tape 1. As this half-block is popped
from Tape 2, the same number of symbols are popped from Tape 3. The real input
to M is still being recorded on the third channel of Tape 1.

Intermission (for the reader, not for M). Let us review the situation at this
point. Tape contains the real input read by M so far, with one symbol per tape
square on the third channel. The other two channels of Tape contain 2k + 2
blocks, say Bo, B1, ".., B2k/ 1. The simulations of M1, ..., Mk have been com-
pleted successfully but not necessarily on the same input string. Tape 3 contains
only part of the block written there in Phase 1, and so has the form

b ba a

an as+

REVERSAL-BOUNDED ACCEPTORS 293

CHANNEL

CHANNEL

CHANNEL

TAPE

,HE RE

CHANNEL
Bo BICHANNEL 2

TAPE 2

CHANNEL 11CHANNEL 2. Bo

TAPE 3

FIG. 2. A sketch of the contents of Tapes 1, 2 and 3 after the second part of Phase 2

for some r, s and n.
The parameter d guessed by M at the beginning of Phase is to be such that

the total number of steps taken in Phases and 2 is precisely r. We now resume the
development.

Phase 3. Tapes and 2 are popped together and compared to verify that
B2k+l B2k and then to verify that B2k B2k-1,’’’, B1 Bo. If all of these
comparisons succeed, then Bo B B2k + 1, and indeed all the simulations
were appropriate and were accepting computations on the same guessed input
string. Furthermore, the blocks are of even length, and it is precisely half of the
block that remains on Tape 3 at the beginning of Phase 3. This has the form

b ba a

an ar +

where the guessed string a a, is in L(Mi)--L for every i= 1, ..., k.
If the guess of d was correct, then the first r symbols of the guessed input to M are
stored in forward order on the first channel of Tape 3, the remaining n r are on

294 RONALD BOOK, MAURICE NIVAT AND MICHAEL PATERSON

the second channel in reverse order, while the first r symbols of the real input are
on the third channel ofTape at the start of Phase 3. Therefore, as Tape is popped
during Phase 3 in order to match the blocks, Tape 3 can be popped at the rate of
one square every 4k + 5 steps, and the first r symbols of the real and guessed input
can be verified to be identical. Simultaneously, the second channel of Tape 3 can be
compared with the real input symbols which are being read at the rate of one per
step. If these checks are all successful, then the computation is complete as the
nth tnd final input symbol is read.

If the real input is of length n and the blocks written by M are of length 2m,
then in the event of a successful simulation:

e + n 2m(4k + 5) where e is the number of dummy symbols in a block;
r- d + 2m(2k + 2)= maximum length of Tape 1;
n r m(4k + 5) number of packed symbols in half block on Tape 3.

Hence, d m e. Since e < 8k + 10 and m [n/(8k + 10)], d is nonnegative
provided n is sufficiently large. Inputs of length less than this can be dealt with by
the finite state control of M.

It is clear that M operates in real time and makes only one reversal on each
tape, and that L(M) L1 f) L2 [") Lk. [-]

Suppose that L1,-.., Lk are arbitrary context-free languages. We do not
know whether L1 f) f) Lk can be accepted in real time by an acceptor with
pushdown stores that make a bounded number of reversals. However, by varying
the construction used in the proof of Lemma 3.2, it is easy to see that such an inter-
section can be accepted in real time by an acceptor with three pushdown stores
such that two of the pushdown stores make at most one reversall This leads to the
following result which strengthens the main result in [3].

THEOREM 3.3. Let L be a language. Thefollowing are equivalent:
(i) L is accepted by a multitape nondeterministic Turing acceptor which operates

in linear time;
(ii) L is the length-preserving homomorphic image of the intersection of some

finite number of context-free languages;
(iii) L is accepted by a nondeterministic acceptor which operates in real time

and which has three pushdown stores as auxiliary storage tapes, two of which make
at most one reversal during any computation;

(iv) there exist a context-free language LI, two linear context-free languages
L2 and L3, and a length-preserving homomorphism h such that L h(L 1") L2 1"] L3).

Let f be a function acting as a time bound. A nondeterministic acceptor M
operates within time bound f if for every input string w accepted by M, there is
some accepting computation of M on w with no more than f(lw[) steps. The proof
of Theorem 3.1 can be extended to establish the following result.

THEOREM 3.4. For any time bound f, ifM is a multitape Turing acceptor which
operates within time bound f, then there is a nondeterministic Turing acceptor M2

such that M2 operates within time bound f, M2 has three pushdown stores as auxiliary
storage, two ofMz’s pushdown stores make at most one reversal in any computation,
and M2 accepts just those input strings accepted by M (i.e., L(M)= L(M2)).
Further, ifM operates in such a way that each of its storage tape heads makes at
most a bounded number ofreversals, then M2’s third pushdown store need make only
one reversal.

REVERSAL-BOUNDED ACCEPTORS 295

4. Concluding remarks. In Theorem 3.1 we specify nondeterministic reversal-
bounded multitape acceptors that operate in linear time. We show that it is suffi-
cient to consider those acceptors which havejust three pushdown stores, where each
pushdown store makes at most one reversal, and where the acceptor operates in
real time. In particular, this shows that there is only a finite hierarchy of classes
of languages based on the number of storage tapes a reversal-bounded acceptor
needs. The fact that just three pushdown stores are used plays no particular role.
However, it is an open question whether these acceptors are more powerful than
those reversal-bounded acceptors with just two pushdown stores.

Recall from [3, Lemma 1.2] that a language is accepted in real time (in fact,
linear time) by a nondeterministic multitape Turing acceptor if and only if it is
the length-preserving homomorphic image of the intersection of some finite
number of context-free languages. (By the present Theorem 3.3 or [3], it is sufficient
to intersect three context-free languages.) Thus if every language accepted in real
time by a nondeterministic multitape Turing acceptor is accepted in real time by
a nondeterministic reversal-bounded multipushdown acceptor, then every context-
free language is accepted in real time by a nondeterministic reversal-bounded
multipushdown acceptor. Conversely, suppose that every context-free language
is accepted by a nondeterministic reversal-bounded multipushdown acceptor.
Clearly, the class of languages accepted in real time by reversal-bounded multi-
pushdown acceptors is closed under intersection and length-preserving homo-
morphism. Hence if this class contains all the context-free languages, then it con-
tains all the languages accepted in real time by multitape acceptors. We conjecture
that this is not the case, that is, we conjecture that (i) the class oflanguages accepted
in real time by nondeterministic multitape Turing acceptors properly contains the
class of languages accepted in real time by nondeterministic reversal-bounded
multipushdown acceptors, and equivalently that (ii) there exist context-free
languages which are not accepted in real time by.nondeterministic reversal-bounded
multipushdown acceptors. Since there are languages in the latter class which are
not context-free (e.g., {a"b"c"ln > 0}), (ii) is equivalent to the conjecture that this
class and the class of context-free languages are not comparable.

REFERENCES

[1] S. ANDERAA, On k-tape versus (k + 1)-tape real time computation, to appear.
[2] B. BAKER AND R. BOOK, Reversal-bounded multi-pushdown machines, J. Comput. System Sci.,

8 (1974), pp. 315-332.
[3] R. Book AnD S. GmmACH, Quasi-realtime languages, Math. Systems Theory, 4 (1970), pp.

97-111.
[4] S. GINSBURG AND E. SPANIER, Finite-turn pushdown automata, SIAM J. Control, 4 (1966), pp. 429-

453.
[5] S. GREIBACH AND S. GINSBURG, Multi-tape AFA, J. Assoc. Comput. Mach., 19 (1972), pp. 192-

221.
[6] S. GREIBACH AND J. HOPCROFT, Scattered context grammars, J. Comput. Systems Sci., 3 (1969),

pp. 233-247.
[7] J. HARTMANIS, Tape-reversal bounded Turing machine computations, Ibid., 2 (1968), pp. 117-135.
[8] J. HARTMANIS AND R. STEARNS, On the computational complexity ofalgorithms, Trans. American

Math. Soc., ll7 (1965), pp. 285-306.
[9] L. LIU AND P. WEINER, Arl infinite hierarchy of intersections of context-free languages, Math.

Systems Theory, 7 (1973), pp. 185-192.
[10] M. RABIN, Real-time computation, Israel J. Math., (1963), pp. 203-211.

SIAM J. COMPUT.
Vol. 3, No. 4, December 1974

EXISTENCE OF GRAPHS WITH THREE SPANNING TREES
AND GIVEN DEGREE SEQUENCE*

SUKHAMAY KUNDU

Abstract. A simple necessary and sufficient condition is given for a degree sequence to be realizable
by a graph that contains three mutually edge-disjoint spanning trees.

Key words, degree sequence, spanning tree, realizability

The problem. In this note, we are concerned with a certain variation of the
realizability problem of a degree sequence. A degree sequence [di] consists of n
positive integers di, which are to be regarded as the number of edges incident
with vertices v (1 < n) of some n-point graph G. Problem" when does there
exist a graph G whose degree sequence is [di] and which contains three mutually
edge-disjoint spanning trees?

For our purposes, a graph shall have no multiple edges and no loops, and
shall have 6 or more vertices. (The complete graph K6 on six vertices is the smallest
graph that contains three edge-disjoint spanning trees.) Moreover, the sequence
[di] will be, assumed to be nonincreasing, i.e., d >= di+ for =< =< n 1.

It is a simple matter to see that the following two conditions are necessary
for the existence of a graph G containing 3 edge-disjoint spanning trees.

(a) Id] is graphical, i.e., there exists a graph whose degree sequence is [di].
(b) d >__ 3 for all i, and the sum of d is at least 6(n 1).

The second condition holds because each tree has at least one edge incident with
v, and the trees together contain 3(n 1) edges. It is the purpose of this note to
show that the conditions (a) and (b) are also sufficient.

THEOREM. A degree sequence [di] is realizable by a graph G containing three
mutually edge-disjoint spanning trees if and only if conditions (a) and (b) hold.
A similar theorem was previously obtained for the case of two trees [2]. It would
be interesting to know if conditions (a) and (b), suitably modified as d >= and

d > 2t(n 1), remain sufficient for the general case, namely, the existence of a
graph G containing (>4) mutually edge-disjoint spanning trees whose degree
sequence is given by Idol. We conjecture that this is indeed the case.

Proof of the theorem. Relevant to our proof by induction are the following
two lemmas (see 3]), whose proofs are omitted here. The first lemma allows us to
construct the spanning trees of graph G from those in the realizing graph of certain
reduced sequences, and Lemma 2 shows that such reduced sequences are graphical.

LEMMA 1. Let T, 1, 2, 3, be three mutually edge-disjoint trees, all spanning
the same vertex set. Thenfor every choice ofa vertex vi and two trees T, Tk, there exist
two edges, one from each tree T and Tk, which are themselves nonadjacent and are
not incident with vertex vi.

Received by the editors July 24, 1973.

" IBM Thomas J. Watson Research Center, Yorktown Heights, New York. Now at Department
of Computer Sciences, University of Texas at Austin, Austin, Texas 78712.

296

GRAPHS WITH THREE SPANNING TREES 297

LEMMA 2. Let d 6(n 1) and d >= 4 for all i. Then there exists a graph
G with degree sequence [di] if and only if d <= n 1.
We now assume that n >= 7 and that the theorem is true for sequences of length
(n 1) or less. There are three cases to consider according as d, 3, 4, or 5.

Case 1. Suppose d, 3. By the induction hypothesis, there exists a graph H
with degree sequence

d 1, d2 1, d3 1, d,,, d5, d,_ 1]

which contains three mutually edge-disjoint spanning trees. To graph H, we add the
vertex v. and the edges {(v,, vl), (v,, v2), v,, v3)}, and call the resulting graph G.
The spanning trees of H together with one of the edges incident with v, constitute
the required trees in G.

A similar construction holds if d 6(n 1) + 2 and d, 4, or d
>_ 6(n 1) + 4 and d, 5, or d, > 6. Of course, only three of the d, edges incident
with vertex v, are included in the spanning trees of G in each case.

Case 2. Let d, 4 and d 6(n 1). The reduced sequence

[d’i] [d 1, d2 1, d3,... d 1]
is graphical unless [di] equals one of the following sequences"

[8, 8, 8, 4, 4, 4, 4, 4, 4], [7, 7, 7, 5, 4, 4, 4, 4],
[6, 6, 6, 6, 4, 4, 43, [6, 6, 6, 5, 5, 4, 4-].

Figures l(a)-(d) give realizing graphs of these sequences, each of which is a disjoint
union of three spanning trees shown respectively in three different kinds of lines.
If [dl] is graphical, let H be a realizing graph with disjoint spanning trees T’,
T, T. One of the trees, say T, (by Lemma or directly) contains an edge (Vp,
which is not incident with v or vz. Now we let G denote the graph obtained by
adding vertex v, to H and making it adjacent to each of vl, v2, Vp, and vq while the
edge (Vp, vq) is removed. Clearly, G T U T2 U T3, where

T T’, + (v., v,), T2 T + (v., v2),
and

Y3 T. + (v., vp) + (v., v) (vp, v)
gives a decomposition of G into three spanning trees, and G has degree sequence
[di]. Finally we have the third case.

Case 3. Suppose d, 5 and di 6(n 1). In this case, we start with a
graph H which is the union of 3 disjoint spanning trees T, T, T and whose degree
sequence is given by

[dl] [dl 1, d2,d3,..., d,_,].

In view of Lemma l, there exist edges (v,, vq) in T and (v, v) in T which are
not incident with vertex v l, and vertices v, vq, v,, v are distinct. Define

T T; + (v.,
T2 T + (v., v.) + (v., vo) (vp, vq),

find
T3 T + (v., vr) + (v., v.) (v., v.).

298 SUKHAMAY KUNDU

\\

/
/

/

(a) [8,8,8,4,4,4,4,4,4]

/)4

(c) [6,6,6,6,4,4,4]

Replace the edge (v4, v6)
in (c) by (vs, v6).

(b) [7,7,7,5,4,4,4,4]

FG.

(d) [6,6,6,5,5,4,4]

The trees T are edge-disjoint and span the vertices vl, v2, "", v,. It remains to put
G T U T2 U T3. A similar argument holds for di 6(n 1) + 2 provided
[di] is not equal to [7, 7, 5, 5, 5, 5, 5, 5] or [6, 6, 6, 5, 5, 5, 5] because then the sequence
[dl] is not graphical. However, the theorem can be directly verified in these two
cases. The proof is complete.

Remark. For d, > 6, our theorem can also be obtained by combining the
results from [1] and [4]. Edmonds’ theorem shows that [di] has a 6-edge connected
realizing graph G, while it follows from [4] that such a graph has at least three
mutually disjoint spanning trees.

REFERENCES

[1] J. EDMONDS, Existence of k-edge connected graphs,.with prescribed degrees, J. Res. Nat. Bur.
Standards Sect. B, 68 (1964), pp. 73-74.

[2] S. KUNDU, Disjoint representation of tree realizable sequences, SIAM J. Appl. Math., 26 (1974),
pp. 103-107.

[3] ---, Disjoint representation of three tree realizable sequences. I, Ibid., 28 (1975), pp. 290-302.
[4], Bounds on the number oj’disjoint spanning trees, to appear.

SIAM J. COM’UT.
Vol. 3, No. 4, December 1974

WORST-CASE PERFORMANCE BOUNDS FOR SIMPLE
ONE-DIMENSIONAL PACKING ALGORITHMS*

D. S. JOHNSONf, A. DEMERS:t:, J. D. ULLMAN,
M. R. GAREYI[AND R. L. GRAHAMII

Abstract. The following abstract problem models several practical problems in computer science
and operations research: given a list L of real numbers between 0 and 1, place the elements of L into
a minimum number L* of "bins" so that no bin contains numbers whose sum exceeds 1. Motivated
by the likelihood that an excessive amount of computation will be required by any algorithm which
actually determines an optimal placement, we examine the performance of a number of simple algo-
rithms which obtain "good" placements. The first-fit algarithm places each number, in succession, into
the first bin in which it fits. The best-fit algorithm places each number, in succession, into the most nearly
full bin in which it fits. We show that neither the first-fit nor the best-fit algorithm will ever use more
than 17.

a-6. + 2 bins. Furthermore, we outline a proof that, if L is in decreasing order, then neither
algorithm will use more than L* + 4 bins. Examples are given to show that both upper bounds are
essentially the best possible. Similar results are obtained when the list L contains no numbers larger
than < 1.

1. Introduction. Recent results in complexity theory 3], [10] indicate that
many combinatorial optimization problems may be effectively impossible to solve,
in the sense that a prohibitive amount of computation is required to construct
optimal solutions for all but very small cases. In order to solve such problems in
practice, one is forced to use approximate, heuristic algorithms which hopefully
compute "good" solutions in an acceptable amount of computing time. Thus,
instead of seeking the fastest algorithm from the set of exact optimization algo-
rithms, one seeks the best approximation algorithm from the set of "sufficiently
fast" algorithms. Unfortunately it is usually difficult to evaluate and compare the
performance of heuristic algorithms, other than by running them on large problem
sets with known optimal solutions. A more rigorous approach is to mathematically
analyze the performance of such algorithms to determine how closely the construc-
ted solutions approximate optimal solutions. In this paper, we consider a number
of heuristic algorithms for an important one-dimensional packing problem and
determine worst-case performance bounds, relative to the optimal solution for
each.

We base our theoretical performance analyses on worst-case, rather than
average, behavior. The analysis of expected performance for a realistic prob-
ability distribution on the problem domain (which is, in itself, usually difficult to

Received by the editors December 3, 1973, and in revised form April 8, 1974.
]" Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massa-

chusetts 02139. The research reported here was supported in part by Project MAC, an MIT research

program sponsored by the Advanced Research Projects Agency, Department of Defense, under
Office of Naval Research Contract N00014-70-A-3062-0006, and by the National Science Foundation
under Contract GJ00-4327. Now at Bell Laboratories, Murray Hill, New Jersey 07974.

:]: Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540. This
work was supported by the National Science Foundation under Grant GJ-35570.

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540. This
work was supported by the National Science Foundation under Grant GJ-1052.

Bell Laboratories, Murray Hill, New Jersey 07974.

299

300 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

determine) appears at present to be considerably more difficult. Worst-case results
are easier--though decidedly nontrivial--to obtain and are quite useful, especially
because they enable one to guarantee that a particular algorithm will never exceed
the optimal solution by more than a known, hopefully small, percentage. Intuitively,
one might expect that a "mechanism" which causes a particular algorithm to
have a certain worst-case behavior might also be expected to manifest itself to a
certain extent in the "average" case. Some experiments [4], [8] with randomly
generated data have tended to confirm the hypothesis that, for the algorithms
considered here, worst-case analysis does provide valid comparisons.

The basic problem to be considered can be stated quite simply" given a list
L (al, a2,..., an) of real numbers in (0, 1], place the elements of L into" a
minimum number L* of"bins" so that no bin contains numbers whose sum exceeds
1.

This problem, which is a special case of the one-dimensional "cutting-stock"
problem [7] and the "assembly-line balancing" problem [2], models several
practical problems in computer science. Some examples are"

1. Table formatting. Let the "bins" be computer words of fixed size" k bits.
Suppose there are items of data (e.g., bit string of length 6, character string of
3 bytes, half-word integer) requiring ka,ka2,... ka bits, respectively. It is
desirable to place the data in as few words as possible. The minimum is given by
L*, where L is the list (a, a2,... an).

2. Prepaging. Here, the bins are pages and the numbers in the list L represent
fractions of a page required by program segments which should appear on a single
page, e.g., inner loops, arrays, etc.

3. File allocation. It is desired to place files of varying sizes on as few tracks of
a disc as possible, where files may not be broken between tracks.

Brown 1] gives a number of additional applications in industry and business.
Since the abstract "bin packing" problem is "NP-complete" in the sense of Cook
[3] and Karp [10], we can expect the problem of finding a packing which uses
exactly L* bins to require in general a lengthy combinatorial search for its solution.
Thus we feel justified in considering the performance ofvarious heuristic algorithms
for constructing packings. In particular we shall consider the following four place-
ment algorithms.

ALGORITHM (First-fit). Let the bins be indexed as B, B2, with each
initially filled to level zero. The numbers ax, a2, a will be placed in that order.
To place ai, find the least j such that Bj is filled to level fl __< ai, and place ai
in Bj. Bj is now filled to level fl + ai.

ALGORITHM 2 (Best-fit). Let the bins be indexed as B1, B2,.’., with each
initially filled to level zero. The numbers a, a2, a will be placed in that order.
To place a, find the least j such that Bj is filled to level fl __< a and fl is as large
as possible, and place a in Bj. Bj. is now filled to level/3 + ai.

ALGORITHM 3 (First-fit decreasing). Arrange L (al, a2, ..., a,) into non-
increasing order and apply Algorithm to the derived list.

ALGORITHM 4 (Best-fit decreasing). Arrange L- (al,a2, "’", an) into non-
increasing order and apply Algorithm 2 to the derived list.

First brought to the attention of the last-named author by E. Arthurs (via S. A. Burr).

ONE-DIMENSIONAL PACKING ALGORITHMS 301

We use FF(L), BF(L), FFD(L) and BFD(L) to denote the number of bins
used in applying each of the four algorithms, respectively, to the list L. The per-
formance measure in which we are interested is the ratio of the number of bins
used by a particular algorithm executed on L to the optimum number of bins L*.
Accordingly we use RFF(k) to denote the maximum value achieved by the ratio
FF(L)/L* over all lists with L* k, with RBF(k), RFFD(k) and RBFD(k) being defined
similarly. Our main results, the first two of which appeared in a preliminary
version of this paper [6], can be summarized as follows:

(1) lim RFF(k) -,
(2) lim RBF(k)- -,

k-

(3) lim RFFD(k)- 1,
k-

(4) lim RBFD(k)- .
ko

All these ratios are achieved for small values of k, so that these asymptotic results
actually reflect the performance for essentially all values of k. In addition, similar
results are obtained for certain restricted lists L.

2. First-fit and best-fit. We begin with a simple example which illustrates the
type of list for which these two algorithms behave poorly. For any n divisible by
18 and 0 < 6 < -,, let the list L (a az, ..., a,) be defined by-- 2, <= <__ n/3,

a -} + 6, n/3 < <= 2n/3,

1/2+6, 2n/3 < <_ n.

Clearly L* n/3 since the elements can be packed perfectly by placing one element
from each of the three regions in each bin. However, as the reader can easily verify,
both first fit and best fit will obtain the packing which consists of n/18 bins, each
containing six elements of size 26, n/6 bins, each containing two elements of
size 1/2 + 6, and n/3 bins each containing a single element of size 1/2 + 6. The two
packings are illustrated in Fig. 1. Thus we have

FF(L) BF(L) (n/18) + (n/6)+ (n/3) 5

L* L* n/3 3

By slightly modifying the list L given in the example, we can force even worse
behavior and prove the following theorem.

THEOREM 2.1. For every k >= 1, there exists a list L, with L* k, such that
FF(L)-- BF(L) > 1.7L* 8.

Praaf. As in the previous example, the elements of the list L will .belong to
three regions, with sizes nearly equal to , 1/2 and 1/2, respectively. The number of
elements belonging to each region will be the same, and those of the first region
will precede those of the second region which precede those of the third region
in the list L.

302 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

LI n/3’

1/3+B

1/2+8

(x n/3)

FF(L) 5n/9:

116-28

1/6-28

1/6-28

I/6-28

I/6-28

I/6-28,

(x n/18)

1/3+8

112+8

(x n/6) (x n/3)

FIG. 1. The 5/3 example

Let N be a positive integer divisible by 17 and let di be chosen so that 0 < 6
<< 18 -N/17. The first region will consist of N/17 blocks often numbers each. Let the
numbers ofthe ith block ofregion be denoted by aoi, ai, ..., a9i. These numbers
are given by the following expressions, where 6 6.18tN/7)-i for <= <= N/17"

aoi 4- 3 a4i - 136i,

all - 3(i, ai-- -F

75a2i a3i 6 a6i-- aTi- asi-- a9i-- 2i.

Let the first 10N/17 numbers in the list L be ao, al, -", a91, ao2, a92,
.., aO(N/7),... a9(N/a.7). We notice that ao + a + + a4 =-56 + 36i, and

asi -t- a6i -k- q- a9i - + ti. Thus, for all i, the first five numbers of block
will fill up bin 2i 1, and the last five numbers of block will fill up bin 2i when
either the first-fit algorithm or the best-fit algorithm is applied to L. To see this
we need only observe that a4, the smallest number in block i, will not fit in any
of the previous bins, since the least filled of these, bin 2i 2, has contents totaling
+ 5_ - + 185. Also, the smallest of as, a6i a9i which is 26, will

not fit in bin 2i 1, which has contents totaling + 35. Thus the N/17 blocks
in region fill up 2N/17 bins.

We now turn to region 2. Here the numbers are all about 1/2, and they are again
divided into N/17 blocks of ten numbers each. Let the ith block of region 2 be
boi, bli ..., b9i. The numbers bo,bl, "", b91, b02, "’’, b92, ,bo(Nil7), "’’,

b9(u/17) follow those of region in the list L. The values of the numbers in block

ONE-DIMENSIONAL PACKING ALGORITHMS 303

are given by"

boi 1/2 -+- 46ii,

bli 1/2 346i,

b2i b3i 1/2 -+-

b4i 1/2 4- 12i,

bsi-- 1/2- 10i,

b6i b7 bsi b9i 1/2 4- i.
The numbers of block fill bins (2N/17)+ 5i- 4 through (2N/17)+ 5i.

These are filled with boi and b li, bzi and b3, etc. To see this, we observe that the
contents of the five bins filled by block sum, respectively, to

}+ 126,, + 12a,, -+ 2ai, +2a,, - +Thus bs 1/2- 10a, cannot fall into either of the first two bins, and b l
34a cannot fall into any of the bins for previous blocks since these are

all filled to at least level } + 2a,_ + 36a. Thus the NIl 7 blocks in region 2
fill up 5N/17 bins.

The third region consists of 10N/17 numbers, each equal to 1/2 + a. These
complete the list L and fill one bin each. The total number of bins filled by either
the first-fit algorithm or the best-fit algorithm applied to list L is thus 2NIl 7 from
region 1, 5NIl 7 from region 2, and 10N/17 from region 3, for a total of N bins.

However, the numbers on the list L can be packed into (10N/17) + bins as
follows. All but two of these bins contain one of the numbers 1/2 + a. The remaining
space in each of these bins is filled with one of the following combinations"

(i) aa + ba for some 2 __< j __< 9 and <_ <_ NIl7,
(ii) aoi + b for some <= <= NIl7,

(iii) a, + bo,+ for some <_ <_ NIl7.
This leaves bo, a{s/ v, and one number 1/2 + a which may be packed easily

into the remaining two bins. We have thus shown that L* _< + 10N/17, so

and, similarly
FF(L)/L* >_ 17N/(ION + 17)> 1.7 2/L*

BF(L)/L* >= 17N/(ION + 17)> 1.7 2/L*.

To obtain values of L* not congruent to (mod 10), we can form the list L’ by
adjoining to L rn elements, each with size 1, where m is a fixed positive integer _< 9.
The preceding arguments then show

FF(L’) FF(L)+ rn

so that

FF(L’) 17N + 17m 17
L’* 10N+ 17+ 17m= 10

and L’* =L* +m

7m+ 17

10((10N/17) + rn + 1)

17 (7m + 17)/10 S
> > 1.7

10 L’* L’*’

since rn _< 9. The same argument applies to BF(L). This proves Theorem 2.1.
We will now show that the examples constructed in the previous proof are

essentially the worst possible, that is, 1.7 is the asymptotic least upper bound of the
ratios RFF(k and RBF(k).

304 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

THEOREM 2.2. For every list L, FF(L)__< 1.7L* + 2 and BF(L)_< 1.TL* + 2.
Proof. We use only the two following properties of the FF and BF algorithms.
(i) No element is placed in an empty bin unless it will not fit in any nonempty

bin.
(ii) If there is a unique nonempty bin with lowest level, no element will be

placed there unless it will not fit in any lower numbered bin.

7/10

I15

I,

0 I/6 I/3 I/2

FIG. 2. Thefunction W()

Define W: [0, 1] [0, 1] as follows (see Fig. 2)"

w()

-}a for0__< a__< ,
--0 for < g <

-0 + o for < __< 1/2,

for1/2< __< 1.

CLAIM 2.2.1. Let some bin befilled with b l, b:, ..., b Then= W(b) <__
Proof. If b =< 1/2, then W(b)/b <= -}. The extreme ratio is reached only when

b 1/2 and is less otherwise. Thus the lemma is immediate unless one b is greater
than 1/2. We may take this one to be b 1, and must show that if m__ 2 b < 1/2, then
Z W(b,)< oi--2

It should be noted that since the slope of W(b) is the same in the regions [0,
and [1/2, 1/2], any b which is in the latter region can be replaced without loss of
generality by two numbers of 1/2 and b 1/2, respectively. We therefore assume that
bi __< 1/2 for 2 __< _< n. Moreover, if bj and bk are both =<, they can be combined into
one and i W(b) will not decrease; in fact it may increase. Thus we may assume
that at most one of the hi’s, >__ 2, is in the range (0, }], and the rest are in (}, 1/2].

We have consequently reduced the proof to the consideration of four cases"

Case 1. m 2, bE -.

ONE-DIMENSIONAL PACKING ALGORITHMS 305

Case 2. m 3,- < b2 < b3
<_ -}.

Case 3. m 3, b2 <= - < b3 <= 1/2.
Case 4. m 4, b2 <=- < b <_ b4 <=1/2.

Case is immediate since b2 =< 1/2 implies W(b2) _< @o. In Case 2, W(b2) + W(b3)
-(b2 + b3) 1/2 -" 1/2 1/2 0, since b2 + b3 1/2. For Case 3, W(b2) + W(b3)
56-b2 "+ -b3 -0 1/2 + 3- flo ?b. And finally, in Case 4, W(b2)+ W(b3)

9+ W(b4) <=-b2 + b3 + b4)- 1/2 b2 + b3 + b4)--b2 1/2_--<TO i7-o,
since bE + b3 + b4 <_ 1/2.

Let us define the coarseness of a bin to be the largest such that some bin
with smaller index is filled to level . The coarseness of the first bin is 0.

CLAIM 2.2.2. Suppose bins are filled according to either the FF or the BF algo-
rithm, and some bin B has coarseness 0. Then every member orb that was placed there
before B was more than halffull exceeds .

Proof. Until the bin has been filled to a level greater than 1/2, it must be either
empty or the unique nonempty bin of lowest level (by property (i) of the placement
algorithm), so by constraints (i) and (ii), any element placed in the bin must not
fit in any bin with lower index, and hence must exceed .

CLAIM 2.2.3. Let a bin of coarseness < 1/2 be filled with numbers b >= b2

>= >= b,, in the completed FF-packing (BF-packing). If im=l b > 1 cz, then

Z W(bi)> 1.

Proof. If b > 1/2, then the result is immedia.te since W(b) 1. We therefore
assume that b =< 1/2. If m >__ 2, then the second element placed in the bin was
placed before the bin was more than half full, so by Claim 2.2.2, at least two of the
elements exceed a. In particular, we must have b >__ 3 2 >= oz. We consider several
cases depending on the range of a.

Casel. a=<. Then Z,=,b >l-a> Since W(fl)/fl>in the range
0 __< fl __< 1/2, we immediately have m__ W(b,) >= -.- 1.

Case 2. =< a __< 1/2. We consider subcases (a)-(c), depending on the value of
m.

(a) m 1. Since b =< 1/2, we must have a =< 1/2 or a >= 1/2, which contradicts
our assumption that a =< 1/2.

(b) m 2. Ifboth b and b2 are => 1/2, then W(b) + W(b2) >= (-. 1/2 + o)" 2 1.
If both are <1/2, then b + b2 < - < a, which contradicts our hypothesis. If
b _> 1/2 and b2 < 1/2, then, since both must be greater than a, a < b < 1/2 =< b2 =< 1/2.
Hence W(ba) + W(b2)= -95b 0 + -b2 + 0 -(b + b2) + {b. Sincebl + b2

__> 1-a and bl>a, we thus have W(b)+ W(bz)->l-cz)+-35a= +1/2
-{a=> 1, sincea=<1/2.

(c) m => 3. As in the previous case, if two of the b are =>, the result is im-
mediate. If b _>- 1/2 > b2 >= x, then

W(b,) + W(b) + W(b,)
i=3

6>= + + + ,Z3 b,

6
b, + >= + >= 1.

306 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

If1/2 > b => b2 > o, then

6
W(b) + W(b) + W(b) >= -(bl + b) -} + -i=3

>= -(1)+ -}(2)- 1/2 + -65 -o 1.

Case 3. 1/2<o<1/2. Ifm= 1, wehavebl >= -o>1/2, soW(b 1) 1.
If m >= 2, then b >= b2 > 1/2 and the result is immediate.
CLAIM 2.2.4. If a bin of coarseness o < 1/2 is filled with b >= >_ b,, and

i"= W(bi) fl, where fl > O, then either
(i) m= landbl <1/2, or

(ii) ,im__ b =< -fl.
Proof. If m and b > 1/2, it is impossible that fl > 0. Therefore, if (i) does

not hold, we may assume that m _>_ 2, and hence b >= b2 >= a by reasoning of the
previous claim. Let y’,im= b a 7. Then we may construct a bin filled with
b3, b,..., b,, and two other numbers 31 and 62 selected so that + 2 bl
+ b2 + 7, 6 >_ b 62 >= b2, and so that neither 6x nor 32 exceeds 1/2. By the proof
of Claim 2.2.3 and the fact that both 3 and 32 exceed a, i3 W(bi) + W(6a)
+ W(62) => 1. But since the slope of W in the range [0, 1/2] does not exceed ,9 it
follows that W(31) + W(62) =< W(bx) + W(b2) + -7. Therefore 7 >= -fl, and (ii)
holds.

We are now prepared to complete the proof. Let L (ax, a2,-.., a,) and
W ’__, W(a). By Claim 2.2.1, L* .=> W.

Suppose that in the FF (BF) algorithm bins B’I, B, ..., B, are all the bins
that receive at least one element and for which y’,j W(aj) fli with fli > O,
where j ranges over all elements in bin B’i. We assume that =< < j _< m implies
that B’ had a smaller index than B in the original indexing of all bins. Let ai be
the coarseness of B’. Since B’ contains no element exceeding 1/2, we must have
each ai < 1/2. By Claim 2.2.4 and the definition of coarseness,

(Zi > i-1 -- -fli-1 for < =< m.
Thus

m-1 9

Since fl,, cannot exceed 1, we have = =< 2. Applying Claim 2.2.3, we obtain

FF(L)=< W+2=<(1.7)L* +2 and BF(L)=< W+2=<(1.7)L* +2,

completing the proof.
As a consequence of Theorems 2.1 and 2.2, we have a corollary.
COROLLARY. (i) lim_ R(k)= 1.7,

(ii) lim_ Rn(k)= 1.7.
It is interesting to note that for several values of k, the ratio : can actually

be attained. In particular, there is a list L with L* 10 and FF(L) BF(L) 17.
The two packings, with all quantities in units of 1--, are shown in Fig. 3. The list
L is in nondecreasing order. There is also a list L having L* 20 and FF(L)

BF(L) 34. It may be true, however, that R(k) < 1.7 and Rs(k) < 1.7 for
k>20.

ONE-DIMENSIONAL PACKING ALGORITHMS 307

L"= 10’

34

(x3)

34

51

(xT)

FF(L) =17’

o(x5)

6(x7)

-9

5O

42

16(x3) 48
34

"///////

51
34

IO(x2) 20

(x5) (xO)

FIG. 3. An example with FF(L) 17 and L* 10

If the list L is such that a =< =< 1/2 for all i, the worst-case behavior of the
two placement algorithms is not as extreme. We then have the following result.

THEOREM 2.3. For any positive <= 1/2, let m l- 1. Then we have
(i) for each k >= 1, there exists a list2 L_(O,] with L* =k such that

FF(L) _> [(m + 1)/m]L* (l/m); and
(ii) for any list L

_
(0,], FF(L) _< [(m + 1)/m]L* + 2.

Both (i) and (ii) hold with FF replaced by BF.
Proof. We first describe how one constructs lists L, with no element exceeding, for which

FF(L) BF(L) m +
L* L* m mL*"

Let k be any positive integer. The list L is composed of elements which are all
very close to 1/(m + 1). The elements are of two types, described as follows"

bj 1/(m + 1)- m2J+ 16, j 1,2, ..., k- l;

alj=a2j a,,j= 1/(m+ 1)+m2J6, j= 1,2,...,k,

where 6 > 0 is chosen suitably small. The list L has the a-type elements occurring
in nonincreasing order and the b-type elements occurring in strictly increasing
order interspersed so that each successive pair, bj and bj_ 1, of b-type elements has

Strictly speaking, L is not a set, but a sequence. However, the use of set terminology is convenient
and should cause no confusion. Other instances will follow.

308 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

precisely rn a-type elements occurring between them. The list L is then completely
specified by the property that bk_ occurs as the second element. We leave it for
the reader to verify that

FF(L)= BF(L)= [k(m + 1)-

It is easy to see that the elements of L can be packed optimally by placing
bj, alj, a2j, amj in a single bin for each j 1,..., k and placing ak,

a2k amk in one additional bin. This gives L* k. We then have

FF(L) BF(L) k(m + 1)- m +
L* L* mk m mL*"

The upper bound is also easily proved. Suppose that the list L contains no
element exceeding 1/m, m an integer.

Consider an FF packing of L. Every bin, except possibly the last bin, contains
at least m elements. Disregarding the last bin, suppose two bins B and B, < j,
each contain elements totaling less than m/(m + 1). Then, since B contains rn
elements, Bmust contain an element with size less than 1/(m + 1). But this element
would have fit in B and thus could not have been placed in B by FF, a contradic-
tion. Thus all but at most two bins must contain elements totaling at least m/(m + 1).
Thus, letting w(L) denote the sum of all elements on L, we have

m
L* >_ w(L)>= (FF(L)- 2),

m+l
so that

FF(L) <= (m + 1)L*/m + 2.

A similar, but slightly more complicated, argument can be used to prove this for
BF.

If we let Rv(k) and Rv(k) be defined analogously to Rw(k) and Rv(k) for
lists L

_
(0,], we have the following immediate corollary"

COROLLARY. limk__,o R-v(k limk_oo Rv(k + L-j .
3. First-fit decreasing and best-fit decreasing. The main results about FED

and BED are the following.
THEOREM 3.1. For each k >__ l, there exists a list L with L* k such that

FED(L) BED(L)> L* 2.
THEOREM 3.2. For all lists L, FED(L) __< 9L* + 4, and BED(L) __< -t-L* + 4.

From these it follows that limk_,oo RFFD(k limk_oo RBFD(k 1.
The proof of Theorem 3.1 consists of a simple construction. Let e satisfy

0<e<T,1 N= Lk/9J,c=_k(mod9) wi.hO=<<9, n= 30N+,andconsider
the list L (a, ..., a,) formed as follows"

.5 +e for =< i=< 6N,

.25 +2e for6N<i=< 12N,

a .25 + for 12N < =< 18N,

.25-2e forl8N<i_< 30N,

1.0 for 30N < =< n.

ONE-DIMENSIONAL PACKING ALGORI’HMS 309

When L is put in decreasing order, the elements of size will head the list, and
BFD and FFD will yield the same packing. Figure 4 shows both this and the opti-
mal packings. We have L* 9N + k, and FFD(L)= BFD(L) 11N +
> -L*- 2.

1/4-2

1/4+

1/2+E

(x k) (x 6N)

114 +2E

L1/4 +2
(x 3N)

OPTIMAL PACKING
L" 9N +

/ /11 x

114 +2;

BFD AND FFD
PACKING

(x 6N)

/4+

1/4+E

114 -2

114 -2

’1/4- 2

1/4- 2e

(x 3N)

FIG. 4. An 11/9 example

BFD(L) FFD(L)
11N+k

The proof of Theorem 3.2 is considerably more complicated than the upper
bound proofs in 2, although some of the same ideas are involved. In this section
we will show that we need only prove the result for the algorithm FFD and a
restricted class of lists. In 4 we will indicate how we go about proving the sim-

plified, though still very difficult, result.
LEMMA 3.3. Suppose L is a list such that FFD(L) > rL* + d, with r, d >= 1.

Then the list L’ obtainedfrom L by deleting all elements not exceeding (r 1)/r also
has FFD(L’) > rL’* + d. The same holds ifFFD is replaced by BFD.

Proof. Let P be the packing of L and P’ the packing of L’, using K and K’ bins,
respectively. If K > K’, then no element in the last bin of P can be larger than
(r 1)/r, and hence all but the last must have levels exceeding l/r, since neither

BF nor FF will start a new bin with an element which would fit in a previous bin.
Thus L* >= a > (1/r)(K 1) and so K < rL* + l, contrary to hypothesis.
Hence K’ >__ K and the lemma is proved.

Thus to prove Theorem 3.2 we need only consider lists L c (, 1]. We would
also like to use a single proof that would simultaneously yield the desired result
for both FFD and BFD. For instance, in 2 we simultaneously proved Theorem
2.2 for both FF and BF by only using properties the two algorithms have in com-
mon. Although this approach has not been successful for the current theorem, we
could still use just one proof for both BFD and FFD if it could be shown that the
result for one were just a simple corollary of the result for the other.

310 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

For instance, if for all lists L, FFD(L) =< BFD(L), the result for FFD would
follow immediately from that for BFD, or vice versa. Unfortunately, as the exam-
ples in Figs. 5 and 6 show, there are both lists L with FFD(L) < BFD(L) and ones
with BFD(L)< FFD(L). Figure 5 presents packings of lists L with BFD(L)
FFD(L), and Fig. 6 presents L with FFD(L) oBFD(L). However, observe

that the first example contains numbers less than , whereas any list L = (, 1]
contains no such numbers. Thus if these numbers less than are essential for
examples like those in Fig. 5, we will still have BFD(L) __< FFD(L) for all lists L
we need to consider for Theorem 3.2, and so the result for BFD would follow from
that for FFD. This is indeed the case, and we devote the remainder of this section
to the details of the proof.

THEOREM 3.4. Suppose L [, 1]. Then BFD(L) __< FFD(L).
Proof. Let L (a 1,..., a,) be ordered so that a >= ai+ 1,

<_ < n, with
a, __> . We assume we have a copy of the FFD packing of L, denoted by PF, and
are now proceeding to construct the BFD packing, element by element. At each
step we will show that there is a way to extend the current packing to a packing
of all of L using no more than FFD(L) bins.

For each i, 0 =< __< n, let L be the final segment of L consisting of all elements
with index exceeding i. Thus Lo L. Let Po be the empty packing of L Lo ,
with which we begin the generation of the BFD packing, and let fo’Lo - N N
be defined as follows" if aie L is the kth largest element in bin j in PF (with ties
broken according to the ordering of L), thenfo(ai) (j, k).

The ordered pair (j, k) may be thought of as representing the kth position in
bin j. We let kj denote the number of elements in bin j in PF. Then we can define

FFD(L) 9N’

1/6

I/6

213

(x3N)

1/6-e

1/6-

1/3+

I/5+e

(x6N)

BFD(L) ION:

1/6-

I/6-

213

1/6-2E
’///////

1/6

1/3+

I/5+E

’,5//////,

I/6-

1/6-

1/6-

I/6-

I/6-

1/6-E

(xSN) (X6N) (xN)

FIG. 5. An example with L* large and BFD(L)/FFD(L) 10/9

ONE-DIMENSIONAL PACKING ALGORITHMS 311

BFD(L) ION’

1/5-(

I/5-(

515+2(

!/5

2/5

2/5

(xSN) (x5N)

FFD(L) =I1N’

////7// ///////,

I/5-2(
///////, II 5-

1/5 1/5-(
2/5

I15-(

515+2(
2/5

I15-(

(x5N) (x5N) (xN)

FIG. 6. An example with L* large and FFD(L)/BFD(L) 11/10

the empty positions ofPo to be

So {(j, k)’l __< j __< FFD(L), <= k <_ kj},
that is, the positions which arefilled in PF but not in Po. This makesfo a 1-1 map
from Lo, the elements of L remaining to be packed, to So, the positions remaining
to be filled in Po. Thus, in essence, fo shows us how to extend Po to a packing of all
of L, by placing each remaining a in position fo(ai), with none of the elements
going in bins which were not used in PF.

The properties offo, Po, and So which allow this to happen can be summarized
as follows, with 0"

(A) f’L S is 1-1.
(B) S

_
{(j, h)’(j, h)is filled in PF but empty in P}.

(C) For each j => 1, the sum of the elements in bin j in P, plus the sum of the
elements which map to bin j under f, does not exceed 1.

As the generation of the BF packing proceeds, we construct P, Si and f"
L.- S for 1 =< _< n as follows" the packing P is obtained by adding element a
to packing Pi_ 1. The bin it goes in is chosen according to the BFD placement rule.
If that bin is the jth, the position a fills is that (j, k) which was unfilled in P_ and
has minimal k. (It is possible that we may have to take k > kj, if the bin already
contains kj elements.) We then set S S_ {(J, k)}. f/is identical with f_
restricted to Li (that is, with a deleted from its domain), with one possible excep-
tion. If a, with i’ > i, hasf_ l(ai, (j, k), we setf(a,) f/_ l(ai). This insures that
f(a,) Si and that f remains 1-1. In fact, a very elementary induction will establish

CLAIM 3.4.1. (A) and (B) holdfor all i, 0 <= <= n.

312 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

Thus eachf will provide us with a way to extend P to a packing of the entire
list L with each element of L going in a bin which was used in PF, if only we can
show that (C) also holds. What is more, this will prove the theorem, for we have
the following claim.

CLAIM 3.4.2. lfforalli, O <_ <_ n,(A),(B)and(C)hold, thenBFD(L) <_ FFD(L).
Proof. Suppose BFD(L) > FFD(L). Let am+l be the first element assigned

to bin FFD(L) + under BFD. By (A) and (B),fm(am+ 1) is a position in one of the
first FFD(L) bins of Pro, and by (C), am+ will fit in that bin. Thus am+ could not
have gone in an empty bin (bin FFD(L) + 1) to the right of that bin without violat-
ing the BFD placement rule. Thus bin FFD(L) + can never become nonempty,
and so BFD(L) __< FFD(L).

The proof of Theorem 3.4 is thus reduced to showing that (C) holds for __<
__< n. Rather than prove this directly by induction, we shall use two slightly more
technical induction hypotheses which, together with (A) and (B), imply (C).

(D) If (j, k) S f) Range(fi), then index[f- l(j, k)] >__ index[f l(j, k)].
(E) If ar fills position (j, k), 1 __< k < k i, in Pi, then r >= index[f l(j, k)].
CLAIM 3.4.3. If(A), (B), (D) and (E) holdfor i, then (C) also holdsfor i.

Proof. Let us consider an arbitrary bin j. We wish to show that the sum of the
elements in bin j in Pi, plus the sum of the elements mapping to bin j under fi,
does not exceed 1. If no element of L maps to bin j, the result is immediate. If
any element does, then by (A) and (B), position (j, kj) must be empty in Pi, so that
(E) will apply to all elements in the bin. If we were to place all elements that map
to binj in the positions to which they map, there would still be at most one element
per position, because by (A)f is 1-1, and by (A) and (B) no element is mapped to a
position which is already filled in Pi. By (D) and (E), each element would have index
no smaller, and hence size no larger, than the element which filled its position in
PF. Since the sum of the elements in any bin in PF does not exceed 1, the claim is
proved.

CLAIM 3.4.4. (D) holdsfor all i, 0 <= <_ n.

Proof. (D) holds trivially for 0. If (D) holds for l, the only opportunity
for it to fail for would be an ai,, i’ > i, for which fi(ai,) =/= fi-l(a’) This can only
happen if fi(a’i)= fi_l(ai). However, by (D) for i- 1, index[f l(f/_l(ai))] _<i

< i’, so (D) continues to hold for i. The claim follows by induction.
The proof of Theorem 3.4 is thus reduced to showing that (E) holds for all i,

0 _< __< n. We do this in two steps. First let h max {i’a > 1/2}, where h is taken
to be 0 if the set is empty.

CLAIM 3.4.5. Each ai, 1 <__ h, is placed by BFD in position fo(ai).
Proof. Since the first elements placed in each of the bins under BFD form a

nonincreasing sequence from left to right, the first time that the BFD choice could
differ from the FFD choice can only have occurred when some bin B to the right
of the FFD choice already contained two or more elements. But if this happens
before ah is assigned, the right-hand bin B would have had a level exceeding -} and
would not have room for any additional elements exceeding . Thus, until a is
assigned, each a goes under BFD into the position it filled in PF, that is, position
fo(ai).

COROLLARY. (E) holdsfor all i, 0 <= <__ h.

ONE-DIMENSIONAL PACKING ALGORITHMS 313

Now let us order the positions by letting (j, k)_< (j’, k’) mean that either
j < j’ orj j’ and k =< k’. The following fact aboutfo will be useful in showing that
(E) holds for > h.

CLAIM 3.4.6. If (j, k), (j’, k’) Sh, k < kj, and (j, k) <= (j’, k’), then index[f x(j, k)]
=< index[fff l(j,, k’)].

Proof. Let a be the element in position (j, k) in PF, ai, the element in (j’, k’).
Since the positions are empty in Ph, we must have - _< ai, ai, <= -}. If j j’, the
result is immediate, as position (j, k’), k’ >_ k, cannot have been filled before (j, k)
under FF and so we must have i’ >= as desired. So assume j < j’. Since k < kj,
position (j, k3) must have been unfilled when ai was to be assigned under FF, and
so until a was assigned, the gap in bin j, was at least 2.- 1/2. If i’ < i, then a, was
assigned before a was, and so would have fit in bin j, contradicting our assumption
that the FF rule assigned a, to bin j’, which is to the right of bin j. Thus we must
have i’ => in this case also, and the claim is proved.

We are now ready to conclude the proof of Theorem 3.4 with the following
claim.

CLAIM 3.4.7. (E)holdsfor all i, h <= <= n.

Proof By Claim 3.4.5, we know that (E) holds for h. Suppose it holds for
1. We shall show it holds for i, and the claim will follow by induction. Consider

element a. Let (j, k) be the position it fills in P, and let (j’, k’) f_ l(a). If k _> k,
then (E) does not apply to the position filled by ai, and so automatically continues
to hold. So we may assume k < k. If (j, k) _< (j’, k’), then by Claim 3.4.6 and (D),

index[fff l(j, k)] _< index[fff l(j’, k’)] _< index[fLll(j’, k’)] i,

and (E) would not be violated.
The only other possibility is (j, k) > (j’, k’) and k < k. We shall show that in

fact this cannot happen. Since both positions (j, k) and (j’, k’) must be empty in

Pi-1 and ai goes in the bottom-most unfilled position in bin j, (j,k)> (j’, k’)
impliesj’ < j, and so binj is to the right ofbinj’. By(D) and (E) for and Claim
3.4.3, a would have fit in bin j’ of P_ 1. Since it went to the right of bin j’ under the
BFD rule, the level of bin j must have exceeded that of bin j’ in Pi_ 1. However, since
k < kj, (E) applies to the elements in bin j in Pi-1, and so they take up no more
space than the corresponding elements in PF. Consequently the gap in bin j,
which we shall write gap(j), is at least as large as f l(j, k) + f-l(j, k) _>_ +

1/2. Thus gap(f), the gap in bin j’ in Pi- 1, must exceed 1/2. Now we cannot have
k 1, as then gap(j)= => gap(j’), and we must have gap(j’)> gap(j). Thus
k > 1, and consequently binj must contain a bottom element b with b > gap(f)
> 1/2 (see Fig. 7). Moreover, since list L is in decreasing order, the bottom elements
in the bins form a nonincreasing sequence from left to right, and so if k 2 we
would again have gap(j) >= gap(f). Hence k > 2 and there is a second element in
bin j in P_ (call it b2) with b2 > gap(j’) > 1/2. But by (E) for 1, this means that
the sum of the bottom two elements in bin j in PF also exceeds , and hence the
bin could have contained at most one additional element greater than or equal to ,
so that k =< 3. Since k > 2 we thus have k >_ k, the desired contradiction. So this
case is impossible, (E) cannot be violated, and the claim is proved.

314 D.S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

b

b2

gap(j

BIN i" BIN

FG. 7

Thus by Claims 3.4.5 and 3.4.7, (E) holds for all i, 0 __< =< n. Claim 3.4.1 and
3.4.4 tell us that (A), (B) and (D) also hold for such i. Thus (C) holds by Claim 3.4.3,
and the theorem follows by Claim 3.4.2. Q.E.D.

A similar argument [6], [8] can be used to show the following result (which,
however, will not be needed in our main task of completing the proof of Theorem
3.2).

THEOREM 3.5. IfL
_

[1/2, 1], then BFD(L) FFD(L).
Notice that the examples given in Figs. 5 and 6 show that the lower bounds

of and 1/2 in Theorems 3.4 and 3.5 are best possible.

4. First-fit decreasing upper bounds. In the previous section we reduced the
proof of Theorem 3.2 to the task of showing that if L (1, 1], then FFD(L)
=< L* + 4. In this section we shall indicate how this can be done, and prove a
simpler upper bound for the case when L (0, 1/2].

The strategy behind such proofs is basically the same as the one used in 2
for FF and BF upper bounds. Essentially, a "weighting function" is defined which
assigns real number values or "weights" to the elements of L, depending on their
size, in such a way that

(i) The total "weight" of all the elements in the list L is no less than a fixed
constant c short of the number of bins used in the particular packing
under consideration (e.g., FF or FFD).

(ii) The total weight of any legally packed bin must be less than some fixed
constant r.

17For FF we had r and c 2;for FFD we shall have r and c 4.
However, the actual details ofthe proofforFFD are considerablymorecomplex

than for FF and BF, requiring the introduction of a number of new concepts.
Rather than burden the reader with this long3 and detailed proof, we shall attempt
to illustrate the basic ideas involved by describing in detail the major techniques
used in the proofofa slightly simpler result, followed by an indication ofthe method
for extending that proof to a proof of Theorem 3.2. Complete details can be found
in Johnson [8].

THEOREM 4.1. For all lists L (0, 1/2], FFD(L) =6--6--<71, +5.

Exceeding 75 pages.

ONE-DIMENSIONAL PACKING ALGORITHMS 315

Remark. Theorem 4.1 gives the best bound possible, as can be seen from Fig. 8,
which gives optimal and FFD packings of lists L for which FFD(L)= 71r.

even though all elements in L are less than 1/2, in fact, less than 1/2. The e in the figure
must satisfy 0 < e =< . We thus will be able to conclude that

lim R/v(k)= lim R/v3(k)
k-

in the terminology of 2.

5/29-

5/29-

5/29

6/29 -I

8/29+

(x 6ON)

////////

8/29+

8/29+

8/29+

OPTIMAL PACKING
L 60N

29-4
(///////.

6/29+E

6/29+E

5/29-5/29-

5/29-(

5/29-(
6/29+e

6/29+

(x 15N)

5/29-E

’(x 20Ni’- (x 56N)

FIG. 8. A 71/60 example

FFD PACKING
FFD(L) 7’1N

We first give an overview of the proof, and then proceed to fill in many of the
details. To begin with, the weighting function W which will be used is not really a
function of elements, but rather a function of sets of elements,

W" 2L -- Q (the rational numbers).

W will be defined in terms of two auxiliary functions.

wa’L--, Q and w2"L x L- Q.

The definitions of w and w2 will be made precise when we give the details of the
proof.

Given a set of elements X __%_ L, we obtain the weight W(X) as follows: for
any partition r of X into one- and two-element sets, let

316 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

rt(1) {x:{x} e re}, (the set of elements which are in one-element sets in the
partition

7t(2) {(x, y) :index(x) < index(y) and {x, y} ert}, (a set of ordered pairs cor-
responding to the two-element sets in

Then let

Z Z
xn(1) (x,y)(2)

Finally we define W(X) min {Wlz(r)}, where r ranges over all partitions of X
into one- and two-element sets. An elementary consequence of the definition as
given so far is that W is subadditive, i.e.,

W U1Xi=
<__ w(x3.

i=1

Having defined the weighting function W, we can then divide the remainder
of the proof of Theorem 4.1 into the two parts indicated at the beginning of the
section. We shall state each part as a lemma, with the first given in sufficient gener-
ality so that it can also be used in the proof of the result.

LEMMA 4.2. For any integer N >= 4 and L c (l/N, 1/2],

W(L) >_ FFD(L) N + 2.

LEMMA 4.3. IfX
_

(-, 1/2] is any set of elements whose sum does not exceed 1,
then W(X) <= -.

By combining these two lemmas with the subadditivity of W, we can conclude
that for any L c (+, 1/2], and X the set of elements in the ith bin of a given optimal
packing of L, we have

L*

FFD(L)- 5 < W(L)< W(X,)< 71.,

i=1

Thus Theorem 4.1 will be proved, since by Lemma 3.3 we can restrict our attention
to lists L c_ (-, 1/2] when proving this upper bound.

We now begin a proof ofLemma 4.2, during which we will provide the remain-
ing details of the definition of W. Let us call x e L a k-piece if x e (1/(k + 1), l/k].
We shall also refer to 2-pieces as B-pieces, 3-pieces as C-pieces, etc. By a k-bin we
mean a bin whose largest element is a k-piece.

Define wl(x) [1/x]- 1. Thus ifx is a k-piece, wl(x) 1/k. Let BASIC denote
the set {x e L: for some k, x is a k-piece and is in a k-bin in the FFD packing of L}.

CLAIM 4.2.1. IfL (1 IN, 1/2], then
N-1

wl(x)>=FFD(L)_
j-1

BASIC 2 J

Proof. Note that for each k, 2 __< k < N, all k-bins, except possibly for the last
(rightmost) k-bin, must contain k k-pieces. For instance, every B-bin, that is, every
2-bin, must contain 2 B-pieces, except possibly for the rightmost one, which may
contain only one B-piece. Thus, with the possible exception of the rightmost
k-bin, all k-bins must contain elements of BASIC whose total w 1-weight is at least
k(1/k) 1. Since even the last k-bin must contain one k-piece belonging to BASIC,
its deficiency can be at most (k 1)/k. This proves the claim.

ONE-DIMENSIONAL PACKING ALGORITHMS 317

As a consequence of Claim 4.2.1, we could satisfy Lemma 4.2 by merely
defining W(X) wl(X) xx w(x). The reason we do not do this, but instead
introduce w2, is in order that we can prove Lemma 4.3. There are many sets of

71elements X whose sum does not exceed and yet for which w(x) > . This is
not surprising in light of the fact that there are probably many elements from L
which are not in BASIC, so that in fact w(L) is probably much larger than
wl(BASIC) and hence much larger than FFD(L). Thus w is in a sense "over-
charging" the bins of the FFD packing.

The elements of SURPLUS L- BASIC can thus be considered excess
baggage in the weight calculated by w. The purpose of w2 is to enable us to avoid
counting this unneeded contribution to the total weight by SURPLUS. Given a
pair of elements, w2 will do this by "discounting" the wl-weight of the second
element by an appropriate amount if certain discounting relations are satisfied by
the members of the pair. The relations can be generally described as follows" (x, y)
is said to obey relation k if x is a k-piece and kx + y _< 1. We define w2 by

w(x) + [(k 1) if (x, y) obeys relation k,
W2(X Y)

w(x) + w(y) otherwise.

Another way of looking at w2 is to note that if (x, y) obeys relation k, then
w({x, y}) Wz(X, y) w(y)/k, and y has been discounted by a factor of 1/k.

As a concrete example, suppose x is a B-piece (2-piece), y a C-piece, and
2x+y<_ 1. Thenw({x,y})=1/2+1/2=andwz(x,y)=1/2+1/2"1/2==--1/2".
If 2x + y > 1, then Wz(X, y) w({x, y})= -.

We are now going to show that the "discount" due to using w2 instead of w
on a pair of elements actually corresponds to an element in SURPLUS, or at
least a portion of one, so that, modulo certain edge effects, the lower bound proven
for w(BASIC) also holds for W12(g), where rc is any partition of L into one- and
two-element sets. Formally, we have Claim 4.2.2.

CLAIM 4.2.2. If N >= 4 and is a partition of L c_ (I/N, 1/2 into one- and two-

element sets, then
N-1 1

Wz(rc) >__ w(BASIC)-
j=3J

Lemma 4.2 will follow from Claims 4.2.1 and 4.2.2, since together they tell us
that for all such zt,

N- NIwz(rc)>- FFD(L)-
j- 1 1

j=2 J j= 3 ff FFD(L) U + 2,

and so W(L) minx w2(r) must also exceed that lower bound.
Proof of Claim 4.2.2. Let Rk, 2 _< k <_ N 2, be the set of all pairs in the

partition rc which obey relation k. Then, since no pairs in zt can obey any relation
k’ > N 2, R U N- 2 Rk is the set of all pairs in r obeying discounting relations.

k=2
If we let DISCOUNT(x,y)= wa(x)+ w(y)- w2(x,y), and DISCOUNT(X)

x.r)x DISCOUNT(x, y) for any set of pairs X, we then have

w12(z0 w(BASIC)+ Wl(SURPLUS)- DISCOUNT(R),

318 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

and consequently all we need prove is that

(4.2.2a) w(SURPLUS) _>_ DISCOUNT(R)-

To show that (4.2.2a) holds, we construct a system of billing" so that for
each (x, y)e R, DISCOUNT(x, y) is billed to some specific element of SURPLUS
(or perhaps divided among a number of such elements), and no element of
SURPLUS is billed for a total of more than its w-weight. A small number of
DISCOUNTS will go unbilled and these will account for the (l/j) term. More
formally, we construct a billing map BILL’R x SURPLUS (0,-] and a set
UNBILLED such that

N-2

(4.2.2b) DISCOUNT(UNBILLED) __< 1/(j + 1).
j=2

For all (x, y)e R UNBILLED,

(4.2.2c) BILL((x, y), z) _>_ DISCOUNT(x, y).
SURPLUS

For all z e SURPLUS,

(4.2.2d) BILL((x,y), z) <= wl(z).
(x,y) R

Inequality (4.2.2a), and hence Claim 4.2.2 will then follow from (4.2.2b)-
4.2.2d.

To keep this paper to a reasonable length, we shall not present the billing
procedure in all its intricacies [8]. However, we will present the basic idea behind
it and an indication of why additional intricacies are necessary.

Initially we set BILL((x, y), z) 0 for all (x, y) e R, z SURPLUS. As we
proceed, some ofthese values will be reset. At any given point in time, z SURPLUS
will have been charged the current value of tx,y)R BILL((x, y), z). For (x, y) R,
we will say that DISCOUNT(x, y) has been billed if

Y BILLx, Yt, zl >_- DISCOUNTIx, Yl.
SURPLUS

We shall treat each R in turn, defining a set UNBILLED

Rk and then

billing the DISCOUNT for each pair in Rk UNBILLEDk in such a way that no
element of SURPLUS will have been charged more than its wl-weight. UN-
BILLED will be defined as Uk_--22 UNBILLEDk. And we will have DISCOUNT
(UNBILLEDk)_<_ l/k+ 1, 2=<k<N-2. The basic idea involved in the
processing of Rk can be explained as follows’Assume that

(G1) no z SURPLUS which is in a k’-bin, k’ >= k, in the FFD-packing has
yet been charged more than 0,

(G2) no member of any pair in R is in a k’-bin, k’ < k.
All the billing we shall do in this case will be to elements of SURPLUSk, the
members of SURPLUS which are in k-bins.

First take all pairs in Rk and relabel them (xi, Yi) in order of increasing index
(with respect to the original list) of their second components. We will thus have
index(y1) < index(y2) < < index(ym), where m]Rk], and hence y =>

ONE-DIMENSIONAL PACKING ALGORITHMS 319

Y2 >- >- Ym" Note that the Xi’S and yi’s are all distinct since the {xi, y}’s form
a partition of R and hence are disjoint.

Suppose we can construct a 1-1 map

g’{ykj’l <= j <= [m/k]} SURPLUS
such that for all y Domain(g),

(G3) index(g(yi)) __<. index(y/).
We can then use g to define BILL for elements of R. For <= j <= [m/k] and
0_<_i=<k- 1, let

BILL((xj+i, Y,j+i), g(Ykj)) DISCOUNT(xj+i, Y,j+i).

(For j [m/k and > m k[m/k-I the definition will be vacuous.)
If we let UNBILLED {(xi, yg)’l _< < k} we thus have for all (x, y) R

UNBILLEDk that DISCOUNT(x, y) has been billed. Moreover,

DISCOUNT(UNB LLED,)
-1 1 1

DISCOUNT(x,y)=< (k- 1). k + 1
<

k +i=1

Finally, the only elements charged are g(y,j), and since g is 1-1, the most g(yj) is
charged is

k-1

BILL((x, y), g(ykj)) E DISCOUNT(xj+i, Y,j+i)
(x,y)eRk 0

Wl(Ykj+i
ki:o
1

<-[k. wl(Ykj)] wI(Ykj) < Wl(g(Ykj))k

by (G3) because index(y+k_l)> > index(yj)>_ index(g(yj)) and L is in
decreasing order.

If the above held for all k, 2 <= k <= N 2, and if g were 1-1 throughout the
composite range [yj’l <= j <= [m/k], 2 <= k <= N 2}, we would have properties
(4.2.2b) through (4.2.2d), and hence Claim 4.2.2 would be proved.

How might we define g so that the above does hold? In the case when both
(G1) and (G2) hold, as they must trivially for k 2, the process is fairly straight-
forward.

Observe that since all (xi, yi)e R obey relation k, we have y + kxi <= 1,
1 _< <_ m, and hence, by the indexing of the pairs, Yi + kxj _<_ 1 for 1 _<_ j =< i.

Let us now look at the FFD-packing again, in particular the k-bins. (See
Fig. 9.) There must be at least m/k] k-bins, since by assumption (G2) there are at
least]Rkl-- m k-pieces in k’-bins for k’_>_ k and hence in k-bins. We label the
bottom k elements in each k-bin from top to bottom and right to left, as shown in
Fig. 9. Then b must be a k-piece, as are all the labeled elements with higher index.
The remaining elements in the bin containing b (the b,-bin) need not all be k-
pieces. Indeed, some may not even exist, if this is the last bin in the packing, in

320 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

bk rm/k’l

bok-k+t

bik

bk+t

b2k-1
b2k

FrG. 9. K-bins of FFD packing labeled for Lemma 4.2.2

bk-1
bk

which case we set the corresponding b 0. By the way FFD is executed, we must
have

bk[,,/k >= bk[m/kl >= > b3 > b2 > b

Now all the xi’s occur in this list; thus for no j < k[m/k] can we have b
for all i, 1 _<_ _<_ j, as that would put one too many xi’s to the right of bj in the
sequence. Thus for each j there exists an i(j) <= j such that xi(j) >= bj. We can thus
conclude that for all h, j, 1 <= j <__ h <= [m/k],

k.

Ykh / Z bkj-k+i Ykh / kbk <= Ykh + kXi(k <= 1.
i=1

Consequently Ykh would fit as the (k + 1)st element in any of the bins to the right
of and including the bkh-bin. Using this fact we can define our function g as follows.

If Yk is in a k-bin in the FFD-packing, then we must have Yk SURPLUSk.
Let g(Yk) Yk" If not, then Yk must by assumption be in some bin to the right of
the bk-bin. Since Yk would have fit in that bin unless it already contained k + 1
elements, the bk-bin must have contained that many elements when Yk was assigned,
one of which must be an element of SURPLUSk and have lower index than Yk.
Let g(Yk) be the largest such element.

Note that in both cases, g(Yk)e SURPLUSk and obeys (G3) for i= k, i.e.,
index(g(yk)) __< index(Yk).

Continuing by induction, assume that values for g(Ykh), 1 <__ h j <__ [m/k],
have been assigned and are all distinct elements of SURPLUSk obeying (G3).
If Yk is in a k-bin, it cannot be g(Ykh) for any h < j, since by (G3) and the labeling of
the yi’s we have index(g(Ykh)) <= indeX(Ykh) < index(Yk). So in this case we again
define g(Ykj) Ykj" If Ykj is not in a k-bin, then it must have gone to the right of the
bk- through bkj-bins, into each of which it would have fit as the (k / 1)st element.
Hence all j bins must contain elements of SURPLUS with index lower than that
of Yjk" Since at mostj i ofthem can have yet been assigned to the range of g, there
is at least one still unassigned and we can let such an element of SURPLUS be
g(Ykj). This maintains the 1-1 property of g and insures that (G3) will hold for

kj.

ONE-DIMENSIONAL PACKING ALGORITHMS 321

Thus by induction we have defined our map

g" {Ykj" 1 <= j <-- [m/k]} SURPLUS

obeying property (G3) throughout its domain.
The above analysis depended on assumptions (G1) and (G2), which, as we

have said, clearly hold for k 2. We might thus hope to proceed by induction.
In our billing procedure, only elements of SURPLUSk received new charges, so
(G1) will continue to hold when we begin to process Rk / ,.

However, there is no guarantee that (G2) will hold for any k > 2. This is
what gives rise to complications. If (x, y) R and x is not in a k-bin, then it must
be in a k’-bin, k’ < k, and hence a member of SURPLUS. If x has not yet been
charged, we can bill DISCOUNT(x, y) to x. If it has been charged more than 0,
then x mu.st be g(z) for some z, with z _< x by (G1), and z may be a k-piece in a
k-bin. The more intricate argument here omitted shows how to modify our billing
procedure to take advantage of such possibilities and still guarantee that (4.2.2b)--
(4.2.2d) hold, and hence Claim 4.2.2, will hold. Q.E.D.

We have already seen that Lemma 4.2 follows from Claim 4.2.1 and 4.2.2.
To complete the proof of Theorem 4.1, we must now turn our attention to Lemma
4.3 which says that for any set X c (, 1/2] whose sum does not exceed 1 W(X) < 71

Since W(X) depends just on the types of the elements in X (e.g., B, C, ..., etc.)
and which discounting relations are satisfied (not on the precise values of the
elements), it is easy to see that there are a relatively small finite number of possible
configurations to consider. We shall illustrate the type of calculation necessary by
treating several typical cases, leaving the remaining 70-0dd, more or less routine,
cases to the ambitious reader.4

(i) X {B,, C2, C3), i.e., X consists of one B-piece and two C-pieces with
C2 C3. Then

71W(X) wI(X Wl(B1) - Wl(C2) -- Wl(C3)-- } -}- 1/2 - 1/2-- - < 6(ii) X {B, B2
g

3 F,} Here w,(X)= 1/2 + 1/2 + - + } 4’ > 71 so the
partition of X into 1-element sets is not adequate for determining W. Note,
however, that

B, + E3 1 B2 F4 < -}- - 1/2},
which implies

2B, + E3 < 22

so that (B, ,E3) obeys relation 2. Hence we get a discount of 1/2.1/2 here.
Similarly (B2, F4) obeys relation 2 and we get an additional discount of 2. Thus

W(X) < " 75-
as required.

(iii) X {C,,C2,E3,E4,Es}. This configuration is impossible since Cie
(1/4, 1/2] and Eje(,-}] imply C, + C2 + E3 + E4 + E5 > 1.

(iv) S {C 02 E3 E4 E5} Then W(X) < w,(X) 1/2 + 1/4 + 1/2 + 1/2 + 1/2 7,

Note that this is the configuration which occurs in the construction used to prove
the lower bound for Theorem 4.1.

Complete details may be found in [8].

322 D.S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

When all possible cases are finally checked (there are only two which yield a
bound of ,71" all other cases are bounded by 67--), the proof of Theorem 5 follows at
once from the preceding remarks.

It is not difficult to show that if no element of L exceeds 9, then the preceding
analysis proves W(X) <__ - for all sets X of elements in a legally packed bin. (Case
(ii) cannot occur since there are now no B-pieces;in case (iv), additional dis-
counting now becomes possible.) This observation leads us to the following
corollary.

COROLLARY. (a) For

lim RFD(k 71.

(b) for o (1/4,],
lim RFD(k)- .

The lower bound for (b) is proved with a construction similar to those used
earlier, with the list L (a l, aa, ..., a) composed of 24N elements, half equal to
.25 + e and half equal to .25 e, where 0 < e < 11/2.

A similar (but more complicated) analysis can be given to establish Theorem
4.4.

THEOREM 4.4. For e (-}, 1/4],
lim RFo(k 23

20"
k

The reader is referred to Johnson [8] for a much more complete discussion of the
details needed to complete the proofs of these and other similar results.

As proposed at the beginning of this section, the techniques used in the proof
of Theorem 4.1 form a significant part of the proof of Theorem 3.2, whose crucial
assertion is that FFD(L) L* + 4 for all lists L G (, 1].

The inclusion of A-pieces, that is, elements which exceed , causes rather
severe problems for the relatively simple calculations we were able to perform in
proving Theorem 4.1. We are now forced to resort to somewhat more subtle ideas.
The basic strategy is as follows.

(a) We assume we have a list L (a a2 an), consisting of A-,
B-, C-, D- and E-pieces, where the E-pieces lie in (,]. Let P* denote some
optimal packing of L and let PVVD denote the FFD-packing of L. Define to be
the set of non-A-pieces in L and

{a e " a is not in an A-bin in P*},

{a " a is not in an A-bin in PVFD}"

(b) A key idea now is to note that a packing of the non-A-bins in PFFD is the
same as if we had applied FFD directly to alone. And since does not contain
any A-pieces, all the facts we proved before about W will hold for that packing.
In particular, from Lemma 4.2 with N 6 we have

(*) W() FFD(L) -IAI 4

where IA[denotes the number of A-pieces in L.

ONE-DIMENSIONAL PACKING ALGORITHMS 323

(C) However, we still face the problem that 6o need not contain the same
elements as . Some elements that are not in A-bins in one packing may be in
A-bins in the other. In addition, there is the fact that the number of A-bins is the
same in both packings and must somehow be counted when we try to put a bound
on FFD(L). To take care of these two problems, we introduce two functions:

f:L2 and g:LQ.

They satisfy the two properties (i) - U ’= f(ai) and (ii) IAI _-> = g(ai).

(d) fand g can be extended to set functions on subsets X L by

f(s) U f(a), g(x) g(a).
aX aX

We can then use a case, analysis to establish the following critical inequality for
the set of pieces X in any legally filled bin"

W(f(X)) + g(X) __< -(y(X) + g(X)),

where
if X contains no A-pieces,

otherwise.

We can say that the left-hand side of the inequality counts bins in PFFD and
the right-hand side does the same for P* (and multiplies the result by -), since
W counts non-A-bins in PVVD, Y counts them in P*, and g counts the A-bins in
both packings.

(e) Given this intuitive way of looking at (**), we observe that, if f and g
satisfy (i) and (ii), respectively, and if property (**) holds for all possible X (the set
of elements in the ith bin of P*), Theorem 3.2 then follows by summation. For in
this case we would have

L* L*

W(ff)+g(L)__< U W(f(X,)) +
i=

L*

<= -y(X,) + -g(L)
i=1

19-9(L* -IAI + g(L))

by subadditivity of W and (i) and (ii)

by (**)

by definition of y.

Thus by (*),

FED(L)- IAI 4 + g(L) __< 9-t(L* -IAI + g(L)),

implying that

FFD(L) __< L* (IA]- g(L)) + 4

< L* + 4 by (ii),

which is just Theorem 3.2.
Unfortunately, the amount of space required to present the details necessary

to establish the preceding remarks prohibit us from giving them here. The defini-
tions off and g are also somewhat complicated, although intuitively f assigns to

324 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

each piece a in L a subset of for which a is, in a rough sense, "uniquely respon-
sible", while g serves to count those A-bins which "collaborated" in this "respon-
sibility". Needless to say, the actual arguments are considerably more complex
than those given for Theorem 4.1. The interested reader is referred to Johnson
in which the complete details of these proof techniques may be found.

5. Concluding remarks. The four bin-packing algorithms studied in this paper
are actually special cases of more general classes of algorithms which have been
considered in some detail by Johnson [8], [9]. We mention here several relatively
unexplored directions in this area which seem to be of some interest.

(i) What is the worst-case behavior for BFD and FFD when the lists L are
restricted from above and below, i.e., L

_
(a, fl) for fixed 0 < =< fl < 1. The

corresponding results for FF and BF are known and can be found in Johnson [83.
It appears that the precise bounds on this behavior will probably be rather
complicated functions of and fl, depending on certain of their number-theoretic
properties.

(ii) How do these various algorithms compare among themselves? For
example, we have seen that BFD(L) _< FFD(L) for L

_ , 1]. On the other hand,
BFD(L)/FFD(L) >= 1-9-q can occur for lists L with arbitrarily large L*. How large
can this ratio be for large L*? How small can it be? The same questions can be
asked for other pairs of algorithms.

(iii) What is the trade-off between the effectiveness of an algorithm and the
efficiency of implementation of the algorithm? For example, for a list L with n
elements FFD(L) and BFD(L) are both bounded above by L* and both can be
implemented using O(n log n) operations. How well can an O(n) algorithm per-
form? If we are willing to use an O(n2) algorithm, how close to L* can we be
guaranteed of coming?

(iv) It is possible to consider bins with differing capacities. How does the
ordering ofthe bin sizes affect the number ofbins required by the various algorithms
under consideration? For example, by how much can ordering the bins largest
first differ from the optimal ordering when FFD is applied?

(v) All the questions raised so far also apply (with suitable modifications)
to two-dimensional bin packing. In view of potential applications, this direction
would seem to warrant further investigation.

(vi) What is the expected behavior of these algorithms? For example, if the
elements of L are chosen uniformly from [0, 13, what is the expected value of
FF(L)/L*? FFD(L)/L*? Simulation results on.FF, BF, FFD, BFD [4], [8] indicate
that FFD(L) and BFD(L) are almost always better than FF(L) and BF(L) for a
random L, with BF occasionally slightly better than FF.

REFERENCES

[1] A. R. BROWN, Optimum Packing and Depletion, American Elsevier, New York, 1971.
[2] R. W. CONWAY, W. L. MAXWELL AND L. W. MILLER, Theory of Scheduling, Addison-Wesley,

Reading, Mass., 1967.
[3] S. A. COOK, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symp. on the

Theory of Computing, 1971, pp. 151-158.
[4] J. CroNY, Private communication.
[5] S. EILON AND. N. CHRISTOFIDES, The loading problem, Management Sci., 17 (1971), pp. 259-268.

ONE-DIMENSIONAL PACKING ALGORITHMS 325

[6] M. R. GAREY, R. L. GRAHAM AND J. D. ULLMAN, Worst-case analysis of memory allocation
algorithms, Proc. 4th Annual ACM Symp. on the Theory of Computing, 1972, pp. 143-150.

[7] P. C. GILMORE AND R. E. GOMORY, A linear programming approach to the cutting stock problem H,
Operations Res., 11 (1963), pp. 863-888.

[8] D. S. JOHNSON, Near-optimal bin packing algorithms, Doctoral thesis, Mass. Inst. of Tech.,
Cambridge, Mass., 1973.

[9] , Fast algorithms for bin packing, J. Comput. Systems Sci., 8 (1974), pp. 272-314.
10] R. M. KARP, Reducibility among combinatorialproblems, Complexity ofComputer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

SlAM J. COMI,

Vol. 3, No. 4, December 1974

ERRATUM" GENETIC ALGORITHMS AND THE
OPTIMAL ALLOCATION OF TRIALS*

JOHN H. HOLLAND+

The statement of Theorem (1.5, 13.92) contains an important misprint. For
"2" one should read ":2)". (2) is the schema with the lowest observed payoff
rate after N trials.)

This Journal, 2 (1973), pp. 88-102. Received by the editors October 29, 1973.

" Department of Computer and Communication Sciences, University of Michigan, Ann Arbor,
Michigan 48104.

326

	SMJCAT_V03_i1_p0001
	SMJCAT_V03_i1_p0011
	SMJCAT_V03_i1_p0023
	SMJCAT_V03_i1_p0041
	SMJCAT_V03_i1_p0056
	SMJCAT_V03_i1_p0062
	SMJCAT_V03_i1_p0090
	SMJCAT_V03_i2_p0101
	SMJCAT_V03_i2_p0111
	SMJCAT_V03_i2_p0128
	SMJCAT_V03_i2_p0150
	SMJCAT_V03_i3_p0159
	SMJCAT_V03_i3_p0177
	SMJCAT_V03_i3_p0184
	SMJCAT_V03_i3_p0188
	SMJCAT_V03_i3_p0196
	SMJCAT_V03_i3_p0214
	SMJCAT_V03_i3_p0222
	SMJCAT_V03_i3_p0224
	SMJCAT_V03_i4_p0255
	SMJCAT_V03_i4_p0262
	SMJCAT_V03_i4_p0280
	SMJCAT_V03_i4_p0283
	SMJCAT_V03_i4_p0296
	SMJCAT_V03_i4_p0299
	SMJCAT_V03_i4_p0326

